В.Г. Гагарин, Н.Ю. Плющенко
ФГБОУ ВПО «МГСУ»

ОПРЕДЕЛЕНИЕ ТЕРМИЧЕСКОГО СОПРОТИВЛЕНИЯ ВЕНТИЛИРУЕМОЙ ПРОСЛОЙКИ НФС

Приведено определение термического сопротивления воздушной прослойки и рассмотрена необходимость его учета в расчете приведенного сопротивления теплопередаче ограждения с навесной фасадной системой в зимний период года. Сделан вывод о важности учета относительного влияния термического сопротивления воздушной прослойки.

Ключевые слова: вентилируемая прослойка, навесная фасадная система, термическое сопротивление.

В настоящее время как в отечественном строительстве, так и за рубежом широко используются ограждения с навесными фасадными системами (НФС) с вентилируемой воздушной прослойкой (рис.). Их применение направлено на нормализацию влажностного режима ограждающих конструкций, предотвращение перегрева конструкций солнечной радиацией, защиту конструкций от увлажнения атмосферной влагой. Также стены с НФС с вентилируемой воздушной прослойкой получили широкое применение в связи с соответствием повышенным требованиям к теплозащите ограждающих конструкций, направленным, в свою очередь, и на сокращение энергопотребления [1—3].

Конструктив стены с НФС с вентилируемой воздушной прослойкой

На данный момент получен опыт исследований теплозащитных свойств ограждений с вентилируемой воздушной прослойкой [4—10], разработано несколько методик расчета

At the present time in domestic construction and abroad enveloping structures with hinged façade systems (HFS) with ventilated air layer are widely used (fig.). Their use is aimed at moisture control of enveloping structures, prevention of overheating of the structures by insolation, saving the constructions from atmospheric moisture. Also the walls with HFS with ventilated air layer are widely used for correspondence with the raised requirements to thermal protection of the enveloping structures, aimed also at reducing energy consumption [1—3].

Structure of a wall with HFS with ventilated air layer

To the date the experience of thermal properties investigate of envelopes with ventilated air layer has been obtained [4—10], several calculation methods have been developed...
Основные характеристики теплозащиты фасадов на стадии проектирования можно рассчитать по СНиП II—3—79* [19], но представленных расчетов недостаточно для полного описания процесса теплопереноса через ограждающую конструкцию с НФС с вентилируемой воздушной прослойкой. Так, в базовом уравнении приведенного сопротивления теплопередаче ограждения с НФС в зимний период года.

В данной статье рассматривается определение термического сопротивления воздушной прослойки и анализируется его учет в расчете приведенного сопротивления теплопередаче ограждения с НФС в зимний период года.

Основные характеристики теплозащиты фасадов на стадии проектирования можно рассчитать по СНиП II—3—79* [19], но представленных расчетов недостаточно для полного описания процесса теплопереноса через ограждающую конструкцию с НФС с вентилируемой воздушной прослойкой. Так, в базовом уравнении приведенного сопротивления теплопередаче \(R_о^{пр} \) учитывается двухкомпонентность переноса теплоты [11]:

\[
R_о^{пр} = R_о.кон + R_пр эф,
\]

где \(R_о^{пр} \) — приведенное сопротивление теплопередаче всей конструкции, \(m^2 \cdot °C/W \); \(R_о.кон \) — приведенное сопротивление теплопередаче конструкции стены, включая базовые слои, слой утеплителя и теплопроводные включения, в т.ч. кровельные, замкнутые на облицовку, \(m^2 \cdot °C/W \); \(R_пр эф \) — эффективное приведенное сопротивление теплопередаче воздушной прослойки, \(m^2 \cdot °C/W \).

С другой стороны

\[
R_о^{пр} = \frac{t_н - t_в}{q} = \frac{t_н - t_пр}{q} + \frac{t_пр - t_в}{q} = R_о.констр + R_о.обл,
\]

где \(R_о.констр \) и \(R_о.обл \) — приведенные сопротивления теплопередаче частей конструкции от внутренней поверхности до воздушной прослойки и от воздушной прослойки до наружной поверхности конструкции соответственно, \(m^2 \cdot °C/W \); \(t_н \), \(t_в \) — температура внутреннего и наружного воздуха, °C; \(t_пр \) — температура воздуха в воздушной прослойке, °C; \(q \) — плотность потока теплоты через конструкцию, Вт/\(m^2 \).
Параметры $t_{\text{пр}}, q$, а также значение $R_{o}^{\text{пр}}$ будут изменяться с высотой участка ограждающей конструкции. Характеристика $R_{o,\text{констр}}^{\text{пр}}$ в уравнении (2) отличается от характеристики $R_{o,\text{кон}}^{\text{пр}}$ в уравнении (1) тем, что в первой используются $1/\alpha_{\text{пр}}$, а во второй, как и предусмотрено СНиП, $1/\alpha_{n}$. Следовательно, характеристика $R_{o,\text{кон}}^{\text{пр}}$ не зависит от параметров воздушной прослойки и облицовки, в то время как $R_{o,\text{констр}}^{\text{пр}}$ — зависит.

Из уравнений (1) и (2) получаем формулу для расчета термического сопротивления вентилируемой воздушной прослойки НФС $R_{\text{пр}}^{\text{ф}}$:

$$R_{\text{пр}}^{\text{ф}} = R_{\text{СНиП}}^{\text{пр}} \frac{t_{\text{пр}} - t_{n}}{t_{n} - t_{\text{ср}}},$$

где $R_{\text{СНиП}}^{\text{пр}}$ — приведенное сопротивление теплопередаче конструкции стены с утеплителем, определяемое в соответствии со СНиП II-3-79*, $m^{2} \cdot \text{°C}/\text{Вт}$; $\alpha_{\text{пр}}$ — коэффициент теплообмена в воздушной прослойке, $\text{Вт}/(m^{2} \cdot \text{°C})$; α_{n} — коэффициент теплообмена наружной поверхности ограждения, $\text{Вт}/(m^{2} \cdot \text{°C})$; $t_{\text{ср}}$ — средняя по высоте температура воздуха в прослойке, °C.

По произведенным расчетам, значение термического сопротивления воздушной прослойки НФС $R_{\text{пр}}^{\text{ф}}$ в зимний период не превышает 0,25 ($m^{2} \cdot \text{°C})/\text{Вт}$.

Итак, проанализировав учет эффективного термического сопротивления воздушной прослойки $R_{\text{пр}}^{\text{ф}}$ в расчете приведенного сопротивления теплопередаче $R_{o}^{\text{пр}}$ ограждающей конструкции с НФС в зимний период года, можно сказать, что его влияние не столь значительно и им можно пренебречь. Но стоит отметить, что для расчета теплопотерь через ограждающую конструкцию с НФС с вентилируемой воздушной прослойкой важное относительное влияние термического сопротивления воздушной прослойки. Термическое сопротивление воздушной прослойки определяет, насколько уменьшаются теплопотери. Наибольшее влияние эффективное термическое сопротивление воздушной прослойки на теплопотери оказывает при минимальном значении термического сопротивления стены с утеплителем (от внутрен-

The parameters $t_{\text{пр}}, q$, and the value $R_{o}^{\text{пр}}$ will be changed with the height of the enveloping structure part. The characteristics $R_{o,\text{констр}}^{\text{пр}}$ in the equation (2) differs from the characteristics $R_{o,\text{кон}}^{\text{пр}}$ in the equation (1) in the way that in the first we use $1/\alpha_{\text{пр}}$, and in the second as it is supposed by SNiP — $1/\alpha_{n}$. So the characteristic $R_{o,\text{кон}}^{\text{пр}}$ doesn’t depend on the parameters of the air layer and covering, and $R_{o,\text{констр}}^{\text{пр}}$ — depends on them.

Out of the equations (1) and (2) we obtain the formula for thermal resistance calculation of a ventilated air layer of an HFS $R_{\text{пр}}^{\text{ф}}$.

$$R_{\text{пр}}^{\text{ф}} = R_{\text{СНиП}}^{\text{пр}} \frac{t_{\text{пр}} - t_{n}}{t_{n} - t_{\text{ср}}} + \left(\frac{1}{\alpha_{\text{пр}}} - \frac{1}{\alpha_{n}} \right) \frac{t_{n} - t_{\text{ср}}}{t_{n} - t_{\text{ср}}},$$

where $R_{\text{СНиП}}^{\text{пр}}$ is a reduced total thermal resistance of a wall structure with heat insulation, determined according to SNiP II-3-79*, $m^{2} \cdot \text{°C}/\text{W}$; $\alpha_{\text{пр}}$ — a heat transfer coefficient in the air layer, $W/(m^{2} \cdot \text{°C})$; α_{n} — a heat transfer coefficient of the outer surface of the envelope, $W/(m^{2} \cdot \text{°C})$; $t_{\text{ср}}$ — an average temperature of the air in the air layer, °C.

According to the calculations the value of the thermal resistance of the air layer of HFS $R_{\text{пр}}^{\text{ф}}$ in the winter period doesn’t exceed 0.25 ($m^{2} \cdot \text{°C})/\text{W}$.

So having analyzed the account for efficient thermal resistance of an air layer $R_{\text{пр}}^{\text{ф}}$ in the calculation of the reduced total thermal resistance $R_{o}^{\text{пр}}$ of an enveloping structure with a hinged facade system in the winter period we can say that its influence is not sufficient and it can be neglected. But we need to note, that in order to calculate heat losses through the enveloping structure with a hinged facade system with ventilated air layer the relative influence of thermal resistance of the air layer is more important. The thermal resistance of the air layer determines how the heat losses decrease. The efficient thermal resistance of the air layer influences the heat losses at the minimum value of thermal resistance of the wall with insulation (from the

nego воздуха до поверхности утеплителя в воздушной прослойке).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

2. Рыманов А.Г., Ботнар М.И. Температурный режим наружного воздуха в период активного похолодания в холодный период года с позиции теплопотребления зданием // Региональная архитектура и строительство. 2014. № 3. С. 87—91.

5. Машенков А.Н., Чебурканова Е.В. Определение коэффициента теплотехнической однородности навесных фасадных систем с воздушным зазором // Строительные материалы. 2007. № 6. С. 10—12.

REFERENCES

Поступила в редакцию в марте 2015 г.

О б а в в о р а х: Гагарин Владимир Геннадьевич — доктор технических наук, профессор, заведующий кафедрой отопления и вентиляции, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26, 8 (499) 188-36-07, ov@mgsu.ru;

Плющенко Наталья Юрьевна — ассистент кафедры отопления и вентиляции, Московский государственный строительный университет (ФГБОУ ВПО «МГСУ»), 129337, г. Москва, Ярославское шоссе, д. 26, ov@mgsu.ru.

А б о т д е в т о р а х: Gagarin Vladimir Gennad’evich — Doctor of Technical Sciences, Professor, chair, Department of Heating and Ventilation, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; +7 (499) 188-36-07; ov@mgsu.ru;

Plyushchenko Natal’ya Yur’evna — Assistant Lecturer, Department of Heating and Ventilation, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ov@mgsu.ru.

Для цитирования:

For citation: