Preview

Construction: Science and Education

Advanced search

Strength and deformability of different types of geosynthetic barriers

https://doi.org/10.22227/2305-5502.2020.2.4

Abstract

Introduction.

Water engineering facilities utilize geosynthetic barriers of various materials, but the most common are polyvinylchloride (PVC) and polyethylene (PE) considered to be the most efficient. However, the utilization of thermoset geosynthetics (PVC and PE) as watertight elements of the geosynthetic barriers of earth dams has also a number of drawbacks. In the course of time, PVC can lose its properties due to plasticizer loss, whereas PE is susceptible to cracking at thermal impacts. That is why it is necessary to consider geosynthetic barriers of other types as alternatives. For this purpose, we studied the deformability and the strength of geosynthetic barriers of thermoset material (chlorosulfonated polyethylene - CSPE), as well as of a rubber-type synthetic material (ethylene-propylene diene monomer - EPDM).

Materials and methods.

Sample testing of geosynthetic barrier materials for monoaxial extension was conducted by means of a tensile-testing machine, which records during the experiment the changes of the tensile force and the longitudinal extension. The changes of the cross-section area of the samples were measured by means of a digital side caliper.

Results.

It was determined that of the considered geosynthetic barrier types (PE, PVC, CSPE and EPDM) the strongest one is the reinforced CSPE type and the most deformable is the EPDM barrier. Reinforced CSPE geosynthetic barrier has a tensile strength above 100 MPa, it is approximately 5 times higher than that of PVC and PE barriers. By deformability, reinforced CSPE barrier is similar to PE barriers. An EPDM geosynthetic barrier has the linear deformation modulus around 1 MPa, it is capable of a multiple extension without loss of strength.

Conclusions.

By strength vs. deformability ratio, EPDM geosynthetic barriers can compete with PVC barriers.

About the Authors

Alexey S. Prosviryakov
National University of Science and Technology MISiS (NUST MISiS)
Russian Federation


Mikhail P. Sainov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


Andrei O. Zverev
Public Joint-Stock Company Federal Hydro-Generating Company - RusHydro
Russian Federation


Roman V. Lukichev
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


References

1. Глаговский В.Б., Сольский С.В., Лопатина М.Г., Дубровская Н.В., Орлова Н.Л. Геосинтетические материалы в гидротехническом строительстве // Гидротехническое строительство. 2014. № 9. С. 23-27.

2. Саинов М.П., Зверев А.О. Противофильтрационные элементы грунтовых плотин из геосинтетических материалов // Инновации и инвестиции. 2018. № 1. С. 202-210.

3. Cazzuffi D. The use of geomembranes in Italian dams // International Water Power & Dam Construction. 1987. Vol. 39. No. 3. Pp. 17-21.

4. Рельтов Б.Ф., Кричевский И.Е. Перспективы применения рулонных пластмасс в качестве экранов плотин из местных материалов // Гидротехническое строительство. 1964. № 1. С. 29-32.

5. Giroud J.P., Perfetti J. Classification des textiles et mesure de leurs propriétés en vue de leur utilisation en geotechnique // Proceedings of the International Conference on the Use of Fabrics in Geotechnics. Session 8, Paris, France, 1977. Pp. 345-352.

6. Cazzuffi D., Giroud J.P., Scuero A., Vaschetti G. Geosynthetic barriers systems for dams // 9th International Conference on Geosynthetics. 2010. Pp. 115-163.

7. Зверев А.О., Саинов М.П., Лукичев Р.В. Результаты экспериментального исследования полимерных геомембран на двухосное растяжение // Вестник Евразийской науки. 2018. Т. 10. № 4. С. 27. URL: https://esj.today/PDF/35SAVN418.pdf

8. Koerner R.M., Hsuan Y.G., Koerner G.R. Lifetime predictions of exposed geotextiles and geomembranes // Geosynthetics International. 2017. Vol. 24. Issue 2. Pp. 198-212. DOI: 10.1680/jgein.16.00026

9. Меглен Ж., Брель Б., Гордин А. Использование битумной геомембраны Coletanche для гидроизоляции дамбы хвостохранилища медного рудника и ее поведение при землетрясении в 7,5 баллов // Гидротехника. 2013. № 3. С. 73-75.

10. Брель Б., Меглен Ж., Мизар И. Использование битумных геомембран (BGM) Soletanche в суровых климатических условиях // Гидротехника. 2013. № 2 (31). С. 67-69.

11. Koerner R.M. Designing with geosynthetics. 5th edn. Prentice Hall, 2005. 816 p.

12. Rowe R.K., Sangam H.P., Lake C.B. Evaluation of an HDPE geomembrane after 14 years as a leachate lagoon liner // Canadian Geotechnical Journal. 2003. Vol. 40. Issue 3. Pp. 536-550. DOI: 10.1139/t03-019

13. Schoenbeck M.A. Durability of chlorosulfonated polyethylene geomembrane seams after accelerated aging tests // Geotextiles and Geomembranes. 1990. Vol. 9. Issue 4-6. Pp. 337-341. DOI: 10.1016/0266-1144(90)90024-7

14. Roades S. Emergency water supply: The upper Chiquita reservoir // Geosynthetics. 2011. Vol. 29. Issue 5. Pp. 20-24.

15. Blanco M., Castillo F., Touze-Foltz N., Amat B., Aguiar E. Behaviour of an EPDM geomembrane 18 years after its installation in a water reservoir // International Journal of Geomate. 2015. Vol. 9. Issue 1. Pp. 1348-1352. DOI: 10.21660/2015.17.4137

16. Blanco M., Castillo F., Soriano J., Noval A.M., Touze-Foltz N. Comparative study of three different kinds of geomembranes (PVC-P, HDPE, EPDM) used in the waterproofing of reservoirs // Eurogeo 5. Valencia, Spain, 2012. Pp. 46-54.

17. Rigo J-M., Cazzuffi D.A. Test standards and their classification // Identification and Performance Testing. 1991. Pp. 18-50.

18. Лукичев Р.В., Скляднев М.К., Черваков К.С. Исследование деформируемости и прочности полимерных геомембран при одноосном растяжении // Дни студенческой науки : сб. докл. науч.-техн. конф. по итогам научно-исследовательских работ студентов Института гидротехнического и энергетического строительства. 2019. С. 65-70.

19. Wu H., Shu Y., Jiang X., Ren Z. Biaxial tensile mechanical property of geomembrane used as high membrane faced rockfill dam: key technology of high membrane faced rockfill dam (III) // Advances in Science and Technology of Water Resources. 2015. Vol. 35. Issue 1. Pp. 16-22.


Review

For citations:


Prosviryakov A.S., Sainov M.P., Zverev A.O., Lukichev R.V. Strength and deformability of different types of geosynthetic barriers. Construction: Science and Education. 2020;10(2):4. (In Russ.) https://doi.org/10.22227/2305-5502.2020.2.4

Views: 176


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)