Influence of operating parameters of a batch reactor on the efficiency of integrated wastewater treatment and nitrogen compound removal
https://doi.org/10.22227/2305-5502.2020.2.5
Abstract
Introduction.
The process of integrated wastewater treatment from nutrients and biogenic elements, especially from ammonia nitrogen and nitrogen compounds, is the main function in the operation of a wastewater treatment plant nowadays. Due to creating an aerobic and anoxic media in structures with suspended activated sludge, biochemical reactions of nitrification and denitrification are realized. To increase the efficiency of wastewater treatment from nitrogen compounds using suspended microflora, it is necessary to determine the influence of technological parameters - hydrogen ion concentration, dissolved oxygen level and oxidation-reduction potential (ORP) on the integrated biological wastewater treatment process.
Materials and methods.
Experiments aimed at solving the problems posed for each reaction were conducted in order to determine the influence of technological parameters on the rate of nitrification and denitrification in a biological contact reactor.
Results.
As a result of the experiment, the values of the specific rate of nitrification with the optimal pH value of the reactor were obtained. For the denitrification process, the ratio between the dissolved oxygen level, the ORP, and the specific denitrification rate are estimated.
Conclusions.
It was shown that the pH value, dissolved oxygen level and ORP play a significant part in the process of integrated wastewater treatment from nitrogen compounds.
Keywords
About the Authors
Ha Quan TranRussian Federation
Elena S. Gogina
Russian Federation
References
1. Воронов Ю.В., Яколев С.В. Водоотведение и очистка сточных вод. М. : Изд-во АСВ, 2006. 704 с.
2. Tchobanoglous G., Stensel H.D., Tsuchihashi R. Wastewater Engineering: Treatment and Resource Recovery. 5th ed. McGraw- Hill, 2014.
3. Friedrich M., Jimenez J., Pruden A., Miller J.H., Metch J., Takacs I. Rethinking growth and decay kinetics in activated sludge - towards a new adaptive kinetics approach // Water Science and Technology. 2017. Vol. 75. Issue 3. Pp. 501-506. DOI: 10.2166/wst.2016.439
4. Ramdani A., Dold P., Deleris S., Lammarre D., Gadblois A., Comeau Y. Biodegradation of the endogenous residue of activated sludge // Water Research. 2010. Vol. 44. Issue 7. Pp. 2179-2188. DOI: 10.1016/j.watres.2009.12.037
5. Van Haandel A., van der Lubbe J. Handbook of biological wastewater treatment. 2 ed. London : IWA Publ., 2012. 770 p.
6. Polprasert C. Organic Waste Recycling: Technology and Management. 3 ed. London : IWA Publ., 2007. 516 p.
7. Leal L.H., Temmink H., Zeeman G., Buisman C.J.N. Comparison of Three Systems for Biological Greywater Treatment // Water. 2010. Vol. 2. Issue 2. Pp. 155-169. DOI: 10.3390/w2020155
8. Law Y., Ye L., Pan Y., Yuan Z. Nitrous oxide emissions from wastewater treatment processes // Philosophical Transactions of the Royal Society B: Biological Sciences. 2012. Vol. 367. Issue 1593. Pp. 1265-1277. DOI: 10.1098/rstb.2011.0317
9. Margi A., Flotats X. Modelling of biological nitrogen removal from the liquid fraction of pig slurry in a sequencing batch reactor // Biosystems Engineering. 2008. Vol. 101. Issue 2. Pp. 239-259. DOI: 10.1016/j.biosystemseng.2008.08.003
10. Панова И.М., Нойберт И. Биологическая очистка по технологии SBR // Экология производства. 2014. № 6. С. 58-61.
11. Poltak R.F. Sequencing Batch Reactor Design and Operational Considerations. New England Interstate Water pollution control commission, 2005.
12. Onnis-Hayden A., Dair D., Johnson C., Schramm A., Gu A.Z. Kinetics and nitrifying populations in nitrogen removal processes at a full-scale integrated fixed-film activated sludge (IFAS) plant // Proceedings of the Water Environment Federation. 2007. Issue 15. Pp. 3099-3119. DOI: 10.2175/193864707787973789
13. Henze M., Gujer W., Mino T., van Loosedrecht M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3 // Water Intelligence Online. 2015. Vol. 5. Issue 0. P. 9781780402369. DOI: 10.2166/9781780402369
14. Morling S. Nitrogen removal efficiency and nitrification rates at the Sequencing Batch Reactor in Nowy Targ. Poland, 2008. Vol. 8. No. 11. Pp. 121-128.
15. Song X., Zhao L., Liu D., Zhao J. Step-feeding SBR for nitrogen removal from expressway service area sewage. Penang, Malaysia, 2017. P. 040021. DOI: 10.1063/1.4977293
16. Чан Ха Куан, Гогина Е.С. Методы реконструкции и модификации реактора периодического действия станций очистки сточных вод во Вьетнаме // Вестник МГСУ. 2019. Т. 14. № 5 (128). С. 589-602. DOI: 10.22227/1997-0935.2019.5.589-602
17. Чан Ха Куан, Гогина Е.С. Применение загрузочного материала BioChip в реакторе периодического действия // Вестник МГСУ. 2020. Т. 15. № 4. С. 592-604. DOI: 10.22227/1997-0935.2020.4.592-604
18. Byung-Dae Lee. Theoretical Evaluation of Nitrogen Removal in Anoxic-oxic-anoxic-oxic Process // International Journal of Chemical, Environmental & Biological Sciences. 2016. Vol. 4. No. 3. P. 4.
Review
For citations:
Tran H.Q., Gogina E.S. Influence of operating parameters of a batch reactor on the efficiency of integrated wastewater treatment and nitrogen compound removal. Construction: Science and Education. 2020;10(2):5. (In Russ.) https://doi.org/10.22227/2305-5502.2020.2.5