Preview

Construction: Science and Education

Advanced search

Numerical analysis of stability of an axially-compressed i-beam rod subjected to constrained torsion

https://doi.org/10.22227/2305-5502.2020.4.2

Abstract

Introduction.

Today thin-walled structures are widely used in the construction industry. The analysis of their rigidity, strength and stability is a relevant task which is of particular practical interest. The article addresses a method for the numerical analysis of stability of an axially-compressed i-beam rod subjected to the axial force and the bimoment. An axially compressed i-beam rod is the subject of the study.

Materials and methods.

Femap with NX Nastran were chosen as the analysis toolkit. Axially compressed cantilever steel rods having i-beam profiles and different flexibility values were analyzed under the action of the bimoment. The steel class is C245. Analytical data were applied within the framework of the Euler method and the standard method of analysis pursuant to Construction Regulations 16.13330 to determine the numerical analysis method.

Results.

The results of numerical calculations are presented in geometrically and physically nonlinear settings. The results of numerical calculations of thin-walled open-section rods, exposed to the axial force and the bimoment, are compared with the results of analytical calculations.

Conclusions.

Given the results of numerical calculations, obtained in geometrically and physically nonlinear settings, recommendations for the choice of a variable density FEM model are provided. The convergence of results is estimated for different diagrams describing the steel behavior. The bearing capacity of compressed cantilever rods, exposed to the bimoment, is estimated for the studied flexibility values beyond the elastic limit. A simplified diagram, describing the steel behaviour pursuant to Construction regulations 16.13330, governing the design of steel structures, is recommended to ensure the due regard for the elastoplastic behaviour of steel. The numerical analysis method, developed for axially-compressed rods, is to be applied to axially-compressed thin-walled open-section rods. National Research Moscow State University is planning to conduct a series of experiments to test the behaviour of axially-compressed i-beams exposed to the bimoment and the axial force. Cantilever i-beams 10B1 will be used in experimental testing.

About the Author

Amirshokh Kh. Abdurakhmonov
Project-2018; Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


References

1. Власов В.З. Тонкостенные упругие стержни. М. : Физматгиз, 1959. 568 с.

2. Власов В.З. Кручение и устойчивость тонкостенных открытых профилей // Строительная промышленность. 1938. № 6. С. 49-53; № 7. С. 55-60.

3. Власов В.З. Тонкостенные упругие стержни (прочность, устойчивость, колебания). М. ; Л. : Госстройиздат, 1940. 276 с.

4. Тимошенко С.П. Об устойчивости плоской формы изгиба двутавровой балки // Известия Санкт-Петербургского политехнического института. 1905. С. 151-219.

5. Wagner H. Verdrehung und Knickung von offenen Profilen // NACA Tech. Memo. 1937. No. 807. Pp. 329-343.

6. Пановко Я.Г., Губанова И.И. Устойчивость и колебания упругих систем. М. : Наука, 1987. 352 с.

7. Горбунов Б.Н. Расчет пространственных рам из тонкостенных стержней // Прикладная математика и механика. 1943. Вып. 1. С. 188.

8. Туснин А.Р. Расчет и проектирование конструкций из тонкостенных стержней открытого профиля : дис.. д-ра техн. наук. М., 2004. 37 с.

9. Белый А.Г. Деформационный расчет и устойчивость тонкостенных призматических стержней произвольного профиля, сжатых с двухосным эксцентриситетом : дис.. канд. техн. наук. СПб., 2000. 114 с.

10. Ватин Н.И., Рыбаков В.А. Расчет металлоконструкций: седьмая степень свободы // Стройпрофиль. 2007. № 2. С. 60-63.

11. Кузнецов И.Л., Богданович А.У. Устойчивость тонкостенного стержня переменного сечения при продольном сжатии и учет нелинейных деформаций // Известия высших учебных заведений. Строительство. 2003. № 2. С. 123-128.

12. Back S.Y., Will K.M. A shear-flexible element with warping for thin-walled open beams // International Journal for Numerical Methods in Engineering. 1998. Vol. 43. Issue 7. Pp. 1173-1191. DOI: 10.1002/(sici)1097-0207(19981215)43:7<1173::aid-nme340>3.0.co;2-4

13. Pavazza R., Matoković A., Vukasović M. A theory of torsion of thin-walled beams of arbitrary open sections with influence of shear // Mechanics Based Design of Structures and Machines. 2020. Pp. 1-36. DOI: 10.1080/15397734.2020.1714449

14. Pavazza R., Matoković A. Bending of thin-walled beams of open section with influence of shear, part I: Theory // Thin-Walled Structures. 2017. Vol. 116. Pp. 357-368. DOI: 10.1016/j.tws.2016.08.027

15. Pavazza R., Matoković A., Vukasović M. Bending of thin-walled beams of open section with influence of shear - Part II: Application // Thin-Walled Structures. 2017. Vol. 116. Pp. 369-386. DOI: 10.1016/j.tws.2016.08.026

16. Rizzi N.L., Varano V. The effects of warping on the postbuckling behaviour of thin-walled structures // Thin-Walled Structures. 2011. Vol. 49. Issue 9. Pp. 1091-1097. DOI: 10.1016/j.tws.2011.04.001

17. Jang G.W., Kim Y.Y. Theoretical analysis of coupled torsional, warping and distortional waves in a straight thin-walled box beam by higher-order beam theory // Journal of Sound and Vibration. 2011. Vol. 330. Issue 13. Pp. 3024-3039. DOI: 10.1016/j.jsv.2011.01.014

18. Vieira R.F., Virtuoso F.B.E., Pereira E.B.R. A higher order thin-walled beam model including warping and shear modes // International Journal of Mechanical Sciences. 2013. Vol. 66. Pp. 67-82. DOI: 10.1016/j.ijmecsci.2012.10.009

19. Brunetti M., Lofrano E., Paolone A., Ruta G. Warping and Ljapounov stability of non-trivial equilibria of non-symmetric open thin-walled beams // Thin-Walled Structures. 2015. Vol. 86. Pp. 73-82. DOI: 10.1016/j.tws.2014.10.004

20. Dey P., Talukdar S. Influence of warping on modal parameters of thin-walled channel section steel beam // Procedia Engineering. 2016. Vol. 144. Pp. 52-59. DOI: 10.1016/j.proeng.2016.05.006.

21. Argyridi A.K., Sapountzakis E.J. Advanced analysis of arbitrarily shaped axially loaded beams including axial warping and distortion // Thin-Walled Structures. 2019; 134:127-147. DOI: 10.1016/j.tws. 2018.08.019

22. Рычков С.П. Моделирование конструкций в среде Femap with NX Nastran. М. : ДМК Пресс, 2013. 783 с.

23. Шимкович Д.Г. Femap & Nastran. Инженерный анализ методом конечных элементов. М. : ДМК Пресс, 2012. 700 с.

24. Прокич М. Несущая способность стальных двутавровых балок при изгибе и кручении с учетом пластической работы материала : дис.. канд. техн. наук. М., 2015. 22 с.

25. Туснин А.Р., Абдурахмонов А.Х. Несущая способность центрально-сжатого двутаврового стержня при стесненном кручении // Промышленное и гражданское строительство. 2020. № 9. С. 21-27. DOI: 10.33622/0869-7019.2020.09.21-27


Review

For citations:


Abdurakhmonov A.Kh. Numerical analysis of stability of an axially-compressed i-beam rod subjected to constrained torsion. Construction: Science and Education. 2020;10(4):11-27. (In Russ.) https://doi.org/10.22227/2305-5502.2020.4.2

Views: 168


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)