An insight into the quality of internal built environment in Vladivostok. Part 1: Studying background radiation in residential premises
https://doi.org/10.22227/2305-5502.2020.4.3
Abstract
Introduction.
The article addresses background gamma radiation in residential premises of apartment buildings in Vladivostok. This study is based on earlier research undertakings focused on the sick building syndrome (SBS), which proves its high relevance. The research is focused on the intensity of background gamma radiation in the residential premises of apartment buildings in Vladivostok. New data obtained in the course of the field experiments, the scale of their analysis, the coverage of substantive issues concerning radiation intensity and its monitoring in residential buildings guarantee the novelty of this research project. These findings also have a practical value that deals with environmental safety.
Materials and methods.
Onsite examinations were conducted in the form of background gamma radiation measurements taken in versatile apartment buildings, built at different times and made of different materials.
Results.
This section contains analytical information about the lack of influence of the location of apartment buildings on background radiation inside the apartments examined within the framework of this research project. Measurement results represent a range of values depending on construction materials used. Principal regularities, derived from the measurement results, are based on the time of operation of residential buildings, which is of practical importance.
Conclusions.
Patterns of influence of building parameters on background radiation inside apartments allow to assess the condition of residential buildings. Background radiation information can be entered into BIM databases and used to formulate the approach to the design of buildings and urban infrastructure so that they were focused on their residents and users. Background radiation research findings, entered into the database and contributed to design algorithms which are customized to the needs of urban residents, will enable designers to project the overall quality of the living environment encompassing the built environment analyzed in this article and other nearby buildings and structures located in Vladivostok.
About the Authors
Vladimir A. DrozdRussian Federation
Valery V. Temchenko
Russian Federation
Yuri V. Chubov
Russian Federation
Vladimir N. Kustov
Russian Federation
Kirill S. Golokhvast
Russian Federation
References
1. Yin H., Liu C., Zhang L., Li A., Ma Z. Measurement and evaluation of indoor air quality in naturally ventilated residential buildings // Indoor and Built Environment. 2019. Vol. 28. Issue 10. Pp. 1307-1323. DOI: 10.1177/1420326x19833118
2. Kaunelienė V., Prasauskas T., Krugly E., Stasiulaitienė I., Čiužas D., Šeduikytė L. et al. Indoor air quality in low energy residential buildings in Lithuania // Building and Environment. 2016. Vol. 108. Pp. 63-72. DOI: 10.1016/j.buildenv.2016.08.018
3. Murniati N. Sick building syndrome in Indonesia and Singapore: A comparative study // Proceedings of the 3rd International Conference on Vocational Higher Education (ICVHE 2018). 2020. DOI: 10.2991/assehr.k.200331.153
4. Ghaffarianhoseini A., AlWaer H., Omrany H., Ghaffarianhoseini A., Alalouch C., Clements-Croome D. et al. Sick building syndrome: are we doing enough? // Architectural Science Review. 2018. Vol. 61. Issue 3. Pp. 99-121. DOI: 10.1080/00038628.2018.1461060
5. Ilinskaya O., Bayazitova A., Yakovleva G. Biocorrosion of materials and sick building syndrome // Microbiology Australia. 2018. Vol. 39. Issue 3. P. 129. DOI: 10.1071/ma18040
6. Afolabi A.O., Arome A., Akinbo F.T. Empirical study on sick building syndrome from indoor pollution in Nigeria // Open Access Macedonian Journal of Medical Sciences. 2020. Vol. 8. Issue E. Pp. 395-404. DOI: 10.3889/oamjms.2020.3785
7. Barbu B.A., Niculescu Z., Moise L.G. Sick building syndrome, a crossroad in modern occupational medicine assessment // Romanian Journal of Occupational Medicine. 2018. Vol. 69. Issue 1. Pp. 12-17. DOI: 10.2478/rjom-2018-0002
8. Осипов Ю.К., Матехина О.В. Комфорт и безопасность жилой среды // Вестник Сибирского государственного индустриального университета. 2014. № 4 (10). С. 43-47.
9. Тимошенко Е.А., Савицкий Н.В. Анализ и характеристика основных факторов, влияющих на экологическую безопасность помещений жилых зданий // Вісник Придніпровської державної академії будівництва та архітектури. 2015. № 1 (202). С. 18-26.
10. Зарипова Л.Р., Иванов А.В., Тафеева Е.А. Внутрижилищная среда и здоровье населения // Современные проблемы науки и образования. 2015. № 5. С. 161.
11. Dunichkin I.V., De Souza C.B. An integrated solution to urban and sea waste management systems: Using axiomatic design to discuss urban development risks // IOP Conference Series: Earth and Environmental Science. 2020. Vol. 459. P. 062084. DOI: 10.1088/1755-1315/459/6/062084
12. Tchorz-Trzeciakiewicz D.E., Olszewski S.R. Radiation in different types of building, human health // Science of The Total Environment. 2019. Vol. 667. Pp. 511-521. DOI: 10.1016/j.scitotenv.2019.02.343
13. Михнев И.П., Михнева С.В. Природные радионуклиды как источник фонового облучения населения Нижневолжского региона. Образование и наука: современные тренды : коллективная монография. 2018. С. 151-166. DOI: 10.21661/r-470002
14. Smetsers R.C.G.M., Tomas J.M. A practical approach to limit the radiation dose from building materials applied in dwellings, in compliance with the Euratom Basic Safety Standards // Journal of Environmental Radioactivity. 2019. Vol. 196. Pp. 40-49. DOI: 10.1016/j.jenvrad.2018.10.007
15. Орлова К.Н., Гайдамак М.А. Исследование тенденций миграции радионуклидов в строительных материалах // Технологии и материалы. 2017. Т. 1. С. 19-24.
16. Дорошенко И.В. Накопление радионуклидов в постройках из различного материала // Современное состояние и проблемы естественных наук : сб. тр. Всероссийской науч.-практ. конф. молодых ученых, аспирантов и студентов, г. Юрга, 17-18 апреля 2014 г. Томск : Изд-во ТПУ, 2014. С. 114-116.
17. Орлова К.Н., Гайдамак М.А. Анализ уровня гамма-излучения в постройках из кирпича // Технологии техносферной безопасности. 2016. № 3 (67). С. 259-263.
18. Madruga M.J., Miró C., Reis M., Silva L. Radiation exposure from natural radionuclides in building materials // Radiation Protection Dosimetry. 2019. Vol. 185. Issue. 1. Pp. 49-57. DOI: 10.1093/rpd/ncy256
19. Krmar M., Milić K., Arsenić I., Hansman J. Effective indoor dose of gamma radiation from building materials: comparison of several methods for estimation and possible underestimate // Radiation Protection Dosimetry. 2020. Vol. 190. Issue 4. С. 452-458. DOI: 10.1093/rpd/ncaa125
20. Dunichkin I., De Souza C.B., Bogachev K., Korobeynikova A., Shchekaturova N. Perspective trends in the design of Multifunctional Residential Units (MRUs) in the Russian Arctic: A discussion of potentials and challenges to their implementation // E3S Web of Conferences. 2019. Vol. 97. P. 01036. DOI: 10.1051/e3sconf/20199701036
21. De Souza C.B., Dunichkin I.V., Pezzica C. A user-centred approach to design Transport Interchange Hubs (TIH): A discussion illustrated by a case study in the Russian Arctic. Computational Science and Its Applications - ICCSA 2019. 2019. Pp. 489-504. DOI: 10.1007/978-3-030-24302-9_35
Review
For citations:
Drozd V.A., Temchenko V.V., Chubov Yu.V., Kustov V.N., Golokhvast K.S. An insight into the quality of internal built environment in Vladivostok. Part 1: Studying background radiation in residential premises. Construction: Science and Education. 2020;10(4):28-47. (In Russ.) https://doi.org/10.22227/2305-5502.2020.4.3