Preview

Construction: Science and Education

Advanced search

Geothermal structures: experimental insights into stress redistribution in 2 × 2 pile groups under asymmetrical thermal loading

https://doi.org/10.22227/2305-5502.2025.1.19

Abstract

Introduction. As energy piles are increasingly utilized for sustainable energy solutions, understanding how thermal loading affects stress distribution within pile groups becomes essential for optimizing their design and functionality. The research aims to elucidate the mechanisms of stress transfer and the resultant effects on pile group behaviour.

Materials and methods. A 1g physical modelling approach was used to investigate the thermo-mechanical behaviour of 2 × 2 pile groups under asymmetrical thermal loading. Three separate tests were conducted, each featuring a group with 1, 2, or 3 energy piles subjected to cyclic thermal variations. The model employed closed-end aluminum pipes for the piles and dry, fine-grained silty sand for the ground. During thermal cycling, pile-head displacements, axial forces and bending moments along the piles, soil pressure changes beneath the pile tip, and temperature distribution around the group are monitored.

Results. The study demonstrates that thermal cycling has a substantial impact on load distribution among energy piles, with load shares rising during heating phases and falling during cooling phases. This results in an irreversible increase in load share due to soil compaction beneath the pile tips. Additionally, the contribution of the pile tip to the estimated head load increases with each heating-cooling cycle, underscoring the effects of thermal softening at the soil-pile interface.

Conclusions. Experimental observations suggest that the classic Boussinesq method may underestimate soil pressure beneath the pile tip during heating phases, potentially due to the soil’s plastic behaviour.

About the Authors

Fardin Jafarzadeh
Sharif University of Technology (SUT)
Islamic Republic of Iran

Fardin Jafarzadeh — PhD, Associate Professor, Civil Engineering Department

Azadi avenue, Tehran



Sina Afzalsoltani
Sharif University of Technology (SUT)
Islamic Republic of Iran

Sina Afzalsoltani — PhD Candidate, Civil Engineering Department

Azadi avenue, Tehran



References

1. Barbir F., Veziroǧlu T., Plass Jr H. Environmental damage due to fossil fuels use. International Journal of Hydrogen Energy. 1990; 15(10):739-749.

2. Lvovsky K., Hughes G., Maddison D., Ostro B., Pearce D. Environmental costs of fossil fuels : a rapid assessment method with application to six cities. 2000.

3. Sauvenier J. Energy geostructures: The case of the Cleunay station in Rennes. 2023.

4. Adam D., Markiewicz R. Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique. 2009; 59(3):229-236.

5. Brandl H. Energy foundations and other thermo-active ground structures. Géotechnique. 2006; 56(2):81-122.

6. Laloui L., Di Donna A. Energy geostructures: innovation in underground engineering. John Wiley & Sons, 2013.

7. Nagano K. Energy pile system in new building of Sapporo City University, Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design. Springer, 2007; 245-253.

8. Haeri S.M., Rajabigol M., Salaripour S., Kavand A., Sayyaf H., Afzalsoltani S. et al. Effects of physical modelling boundary conditions on the responses of 3 × 3 pile groups to liquefaction induced lateral spreading. Bulletin of Earthquake Engineering. 2023; 21(5):2469-2502.

9. Kavand A., Haeri S.M., Raisianzadeh J., Afzalsoltani S. Effectiveness of a vertical micropile system in mitigating the liquefaction-induced lateral spreading effects on pile foundations: 1 g large-scale shake table tests. Scientia Iranica. 2022; 29(3):1038-1058.

10. Kavand A., Haeri S.M., Raisianzadeh J., Meibodi A.S., Soltani S.A. Seismic behaviour of a dolphin-type berth subjected to liquefaction induced lateral spreading: 1g large scale shake table testing and numerical simulations. Soil Dynamics and Earthquake Engineering. 2021; 140:106450.

11. Haeri S., Rajabigol M., Salaripour S., Kavand A., Sayyaf H., Afzalsoltani S. et al. Effects of liquefaction-induced lateral spreading on a 3 × 3 pile group using 1g shake table and laminar shear box, Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions. CRC Press, 2019; 2764-2770.

12. Haeri S.M., Kavand A., Raisianzadeh J., Afzalsoltani S. Effectiveness of a vertical micro-pile system for mitigating lateral spreading damage on pile groups: 1g shake table tests, Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions. CRC Press, 2019; 3989-3996.

13. Jafarzadeh F., Afzalsoltani S. Pile group behaviour under unsymmetrical cyclic thermal loading in dry silty sand: 1g Physical modelling. Scientia Iranica. 2024. DOI: 10.24200/sci.2024.61493.7345

14. Jafarzadeh F., Afzalsoltani S. Unsymmetrical thermal loading effects on a 2 × 2 pile-group: 1g physical modelling approach, Smart Geotechnics for Smart Societies. CRC Press, 2023; 2197-2200.

15. Jafarzadeh F., Afzalsoltani S. Energy Piles, Applications and Research Aspects: An Investigation on the Behaviour of a Single Energy Pile in Dry Condition. International Conference on Geotechnical Engineering-IRAQ. 2022; 261-277. DOI: 10.1007/978-981-19-7358-1_23

16. Jafarzadeh F., Afzalsoltani S., Arbab A., Shirkhani S. 1g Physical Modelling of a Single Heat-Exchanger pile in Silty Sand, Book 1g Physical Modelling of a Single Heat-Exchanger pile in Silty Sand. Sydney, Australia, 2022.

17. Afzalsoltani S., Jafarzadeh F. The effect of mechanical surcharge on single energy pile foundations: 1g physical modelling, Book The effect of mechanical surcharge on single energy pile foundations: 1g physical modelling. Sydney, Australia, 2022.

18. Song H., Pei H., Xu D., Cui C. Performance study of energy piles in different climatic conditions by using multi-sensor technologies. Measurement. 2020; 162:107875.

19. Farivar A., Jafarzadeh F., Leung A.K. Influence of pile head restraint on the performance of floating elevated energy pile groups in soft clay. Computers and Geotechnics. 2023; 154:105141.

20. Wang Y., Zhang F., Liu F., Wang X. Full-scale in situ experimental study on the bearing capacity of energy piles under varying temperature and multiple mechanical load levels. Acta Geotechnica. 2024; 19(1):401-415.

21. Khoshbakht S., Fakharian K. Numerical Investigation of the Load Movement and Ultimate Load of Energy Piles Embedded in Sand. International Journal of Geomechanics. 2024; 24(3):04023297.

22. Pessin J., Tsuha C.H.C. In-field performance of continuous flight auger (CFA) energy piles with different configurations. Applied Thermal Engineering. 2023; 224:120113.

23. Moshtaghi M., Keramati M., Ghasemi-Fare O., Pourdeilami A., Ebrahimi M. Experimental study on thermomechanical behaviour of energy piles in sands with different relative densities. Journal of Cleaner Production. 2023; 403:136867.

24. Ghaaowd I., McCartney J.S. Centrifuge modelling methodology for energy pile pullout from saturated soft clay. Geotechnical Testing Journal. 2022; 45(2):20210062-20210062.

25. Ng C.W.W., Shi C., Gunawan A., Laloui L., Liu H. Centrifuge modelling of heating effects on energy pile performance in saturated sand. Canadian Geotechnical Journal. 2015; 52(8):1045-1057.

26. Ng C.W.W., Farivar A., Gomaa S.M.M.H., Shakeel M., Jafarzadeh F. Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading. Renewable Energy. 2021; 172:998-1012.

27. Ng C.W., Farivar A., Gomaa S.M., Jafarzadeh F. Centrifuge modelling of cyclic nonsymmetrical thermally loaded energy pile groups in clay. Journal of Geotechnical and Geoenvironmental Engineering. 2021; 147(12):04021146.

28. Senejani H.H., Ghasemi-Fare O., Cherati D.Y., Jafarzadeh F. Investigation of thermo-mechanical response of a geothermal pile through a small-scale physical modelling. E3S Web of Conferences. 2020; 205:05016.

29. Foglia A., Abdel-Rahman K., Wisotzki E., Qui-roz T., Achmus M. Large-scale model tests of a single pile and two-pile groups for an offshore platform in sand. Canadian Geotechnical Journal. 2021; 99(999):1825-1838.

30. Yang W., Qiang Y., Ju L., Wang F., Liu A. Numerical evaluations on the effects of different factors on thermo-mechanical behaviour of an energy pile group. Computers and Geotechnics. 2023; 162:105664.

31. BSI. BS EN 1997-1: 2004. Eurocode 7. Geotechnical design. General rules, Book BS EN 1997-1: 2004. Eurocode 7. Geotechnical design. General rules, EditorBSI London, UK, 2004.

32. Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques: principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse. Boussinesq J., Gauthier-Villars, 1885.

33. Sadek M., Shahrour I. Use of the Boussinesq solution in geotechnical and road engineering: influence of plasticity. Comptes Rendus Mécanique. 2007; 335(9-10):516-520.


Review

For citations:


Jafarzadeh F., Afzalsoltani S. Geothermal structures: experimental insights into stress redistribution in 2 × 2 pile groups under asymmetrical thermal loading. Construction: Science and Education. 2025;15(1):180-188. (In Russ.) https://doi.org/10.22227/2305-5502.2025.1.19

Views: 77


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)