Preview

Construction: Science and Education

Advanced search

An insight into the quality of internal built environment in Vladivostok. Part 2: Studying the sanitary and microbiological condition of indoor air

https://doi.org/10.22227/2305-5502.2020.4.4

Abstract

Introduction.

This work is devoted to study the microbiological composition of the air 110 dwellings in the city of Vladivostok and the assessment of the impact of various factors on the microbiological condition of premises. The study is aimed at obtaining information about the real sanitary and hygienic conditions of the exploited residential area and identifying patterns of changes in environmental indicators from design decisions, building parameters and conditions of its operation. Research statistics are the result of field research with laboratory processing of the samples obtained. The relevance of scientific work also lies in the possibility of further factor analysis and verification of sanitary norms and rules with the practice of real design and operation of residential buildings.

Materials and methods.

Surveys were conducted on the basis of air sampling with subsequent assessment of the content of bacteria in the air of apartment buildings of different types, built at different times from different materials.

Results.

The section presents analytical data on the content of three main groups of bacteria in the air of residential premises located on the territory of Vladivostok. Based on the accumulated data, a comparative analysis was carried out to establish a correlation between the number of microorganisms in the air and the city area, the type of building material of the house, the density of apartment occupancy, and the presence of pets.

Conclusions.

Data on the influence of apartment occupancy density on the sanitary and microbiological situation were obtained. The assessment of the influence on the density of microbiological contamination of such factors as: the presence of pets, the type of building materials from which buildings are built, as well as the territorial location of the surveyed apartments.

About the Authors

Vladimir A. Drozd
Center of Hygiene and Epidemiology in Primorsky Krai; Far Eastern Federal University (FEFU)
Russian Federation


Anna L. Ponomareva
V.I. Il’ichev Pacific Oceanological Institute of the Far Eastern Branch Russian Academy of Sciences
Russian Federation


Valery V. Chernyshev
Far Eastern Federal University (FEFU)
Russian Federation


Kirill S. Golokhvast
Far Eastern Federal University (FEFU)
Russian Federation


References

1. Лаушкин М.А., Пунченко О.Е. Корреляция между микробным числом, освещенностью помещений и влажностью воздуха // Профилактическая медицина-2019: сборник научных трудов Всероссийской научно-практической конференции с международным участием. 2019. С. 12-16.

2. Wiśniewska K., Lewandowska A.U., Śliwińska-Wilczewska S. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment - Review study // Environment International. 2019. Vol. 131. P. 104964. DOI: 10.1016/j.envint.2019.104964

3. Фоминых Т.В., Сергеева В.В. Цианобактериально-водорослевые ценозы архитектурных сооружений г. Краснодара и его окрестностей // Студенческий. 2019. № 15-1 (59). С. 24-29.

4. Антропова А.Б., Ахапкина И.Г., Глушакова А.М., Качалкин А.В., Биланенко Е.Н. Микобиота хостелов г. Москвы // Успехи медицинской микологии. 2018. Т. 19. С. 4-6.

5. Ахапкина И.Г., Глушакова А.М., Антропова А.Б., Качалкин А.В., Биланенко Е.Н., Желтикова Т.М. Микробиота пыли жилых помещений разного назначения: перспектива оценки аллергенной и пирогенной нагрузок помещений // Гигиена и санитария. 2019. Т. 98. №. 4. С. 380-387. DOI: 10.18821/0016-9900-2019-98-4-380-387

6. Clements N., Keady P., Emerson J., Fierer N., Miller S. Seasonal variability of airborne particulate matter and bacterial concentrations in Colorado homes // Atmosphere. 2018. Vol. 9. Issue 4. P. 133. DOI: 10.3390/atmos9040133

7. Yen Y.-C., Yang C.-Y., Mena K.D., Cheng Y.-T., Yuan C.-S., Chen P.-S. Jumping on the bed and associated increases of PM10, PM2.5, PM1, airborne endotoxin, bacteria, and fungi concentrations // Environmental Pollution. 2019. Vol. 245. Pp. 799-809. DOI: 10.1016/j.envpol.2018.11.053

8. Kwan S.E., Shaughnessy R., Haverinen-Shaughnessy U., Kwan T.A., Peccia J. The impact of ventilation rate on the fungal and bacterial ecology of home indoor air // Building and Environment. 2020. Vol. 177. P. 106800. DOI: 10.1016/j.buildenv.2020.106800

9. Martins V., Faria T., Diapouli E., Manousakas M.I., Eleftheriadis K., Viana M. et al. Relationship between indoor and outdoor size-fractionated particulate matter in urban microenvironments: levels, chemical composition and sources // Environmental Research. 2020. Vol. 183. P. 109203. DOI: 10.1016/j.envres.2020.109203

10. Cho E.-M., Hong H.J., Park S.H., Yoon D.K., Goung S.J.N., Lee C.M. Distribution and influencing factors of airborne bacteria in public facilities used by pollution-sensitive population: A meta-analysis // International Journal of Environmental Research and Public Health. 2019. Vol. 16. Issue 9. P. 1483. DOI: 10.3390/ijerph16091483

11. Choi M.A., Ahn G.R., Kim S.H. Identification and characterization of fungi contaminated in the built-in furniture of an apartment home // Mycobiology. 2019. Vol. 47. Issue 4. Pp. 430-440. DOI: 10.1080/12298093.2019.1703529

12. Haines S.R., Adams R.I., Boor B.E., Bruton T.A., Downey J., Ferro A.R. Ten questions concerning the implications of carpet on indoor chemistry and microbiology // Building and Environment. 2020. Vol. 170. P. 106589. DOI: 10.1016/j.buildenv.2019.106589

13. Dannemiller K.C., Weschler C.J., Peccia J. Fungal and bacterial growth in floor dust at elevated relative humidity levels // Indoor Air. 2017. Vol. 27. Issue 2. Pp. 354-363. DOI: 10.1111/ina.12313

14. Kim S.-Y., Jheong W., Hwang E.-S., Kim J.-H., Jung J.-S., Lee J.-w. et al. Airborne bacteria concentration and species identification in residential living spaces // Korean Journal of Environmental Health Sciences. 2016. Vol. 42. Issue 6. Pp. 438-449. DOI: 10.5668/JEHS.2016.42.6.438

15. Халдеева Е.В., Глушко Н.И., Лисовская С.А., Паршаков В.Р., Хайдарова Г.Г. Микогенная контаминация жилых помещений как фактор биологического риска // Казанский медицинский журнал. 2020. Т. 101. № 4. С. 513-518. DOI: 10.17816/KMJ2020-513

16. Schildt K.J.M., Seppänen R.T.K., Hielm-Björkman A.K., Saijonmaa-Koulumies L.E., Belova S. Prevalence of house dust mites in the homes of atopic dogs in Finland // Veterinary Dermatology. 2017. Vol. 28. Issue 2. Pp. 225-254. DOI: 10.1111/vde.12421

17. Bope A., Weir M.H., Pruden A., Morowitz M., Mitchell J., Dannemiller K.C. Translating research to policy at the NCSE 2017 symposium “Microbiology of the Built Environment: Implications for Health and Design” // Microbiome. 2018. Vol. 6. Issue 1. DOI: 10.1186/s40168-018-0552-y

18. Tran V.V., Park D., Lee Y.-C. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality // International Journal of Environmental Research and Public Health. 2020. Vol. 17. Issue 8. P. 2927. DOI: 10.3390/ijerph17082927

19. Enyiukwu D.N., Ononuju C.C., Maranzu J.O. Mycotoxins in foods and indoor air: their attendant diseases and modes of injury on biological and human systems // Greener Journal of Epidemiology and Public Health. 2018. Vol. 6. Issue 1. Pp. 034-051. DOI: 10.15580/GJEPH.2018.1.010818004

20. Dunichkin I.V., De Souza C.B. An integrated solution to urban and sea waste management systems: Using axiomatic design to discuss urban development risks // IOP Conference Series: Earth and Environmental Science. 2020. Vol. 459. P. 062084. DOI: 10.1088/1755-1315/459/6/062084

21. Христофорова Н.К., Бойченко Т.В., Емельянов А.А., Попова А.В. Микробиологический контроль состояния вод бухты Новик (залив Петра Великого, Японское море) // Известия ТИНРО (Тихоокеанского научно-исследовательского рыбохозяйственного центра). 2017. Т. 189. С. 121-130.

22. Уряшева Н.Н. Взаимодействие микроорганизмов с каменными строительными материалами // Вестник Южно-Уральского государственного университета. Серия: строительство и архитектура. 2017. Т. 17. № 3. С. 65-71. DOI: 10.14529/build170310

23. Dunichkin I.V., Poddaeva O.I., Golokhvast K.S. Studies and evaluation of bioclimatic comfort of residential areas for improving the quality of environment // Building Simulation. 2019. Vol. 12. Issue 2. Pp. 177-182. DOI: 10.1007/s12273-018-0495-z

24. Dunichkin I.V., Ilina I.N. Climate adaptation of “Smart City” by assessing bioclimatic comfort for UBEM // Sustainability in energy and buildings. 2020. Pp. 519-529. DOI: 10.1007/978-981-32-9868-2_44

25. Азаров В.Н., Блинцова Л.А., Гасайниева А.Г., Гасайниева М.Г., Магомедкамилов Т.Ш., Лихоносов А.В. и др. Микробное исследование мелкодисперсной пыли в кондиционерах офисных помещений // Инженерный вестник Дона. 2019. № 1 (52). С. 151.


Review

For citations:


Drozd V.A., Ponomareva A.L., Chernyshev V.V., Golokhvast K.S. An insight into the quality of internal built environment in Vladivostok. Part 2: Studying the sanitary and microbiological condition of indoor air. Construction: Science and Education. 2020;10(4):48-60. (In Russ.) https://doi.org/10.22227/2305-5502.2020.4.4

Views: 169


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)