Preview

Construction: Science and Education

Advanced search

Design of steel lattice structures of power transmission lines using reliability parameters on the example of anchor-angle support U220-2+9

https://doi.org/10.22227/2305-5502.2025.3.5

Abstract

Introduction. Ensuring the reliability of lattice structures of overhead line (OL) supports is the primary task of the designer. If the calculation and design of typical structures of mass construction is carried out in accordance with the current regulatory documents, then the issue of ensuring the guaranteed minimum required level of reliability of OL supports is carried out by using various types of reliability factors. In fact, FORM methods (first-order methods for determining the reliability of building structures) remain, since SORM methods (second-order methods) are extremely difficult to implement. At the same time, current regulatory documents do not provide an unambiguous algorithm for determining the reliability characteristics of OL support structures.

Materials and methods. The paper proposes a method for determining the susceptibility of steel structures of power transmission lines to avalanche-like collapse based on a numerically reasonable determination of the excluded elements of the system for forming a secondary calculation scheme. It is based on the calculation based on the finite element method in a geometrically and structurally nonlinear formulation. This method allows for a clear determination of the most critical structural rods, rather than assigning them based on engineering experience or recommendations.

Results. method for determining the numerical reliability characteristics of steel structures of power transmission lines is proposed based on the finite element method in a stochastic formulation. The failure range β serves as the main characteristic. The sought reliability of the system is between the lower value of βmin (the characteristic of one of the most critical elements of the system) and the upper value of βmax (the characteristic for a group of the most critical elements of the system), determined during the analysis of the structure for the tendency to avalanche-like collapse. In order to test the proposed methods, the reliability of the anchor-angle support U220-2+9 was analysed. Based on the calculation results, insufficient reliability of the structure for the design situation with the maximum of the considered loads was revealed.

Conclusions. technique was developed for analyzing the tendency of steel rod structures of power transmission line supports to avalanche-like collapse, which makes it possible to determine the most dangerous elements of the system for a specific type of loading.

About the Authors

A. N. Orzhehovskiy
Donbas National Academy of Civil Engineering and Architecture
Russian Federation

Anatoliy N. Orzhehovskiy — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Theoretical and Applied Mechanics

22 Derzhavina st., Makeevka, 86123, DPR

RSCI AuthorID: 968202, Scopus: 57214804876, ResearcherID: AAP-3799-2021



A. V. Tanasoglo
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Anton V. Tanasoglo — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Metal and Wooden Structures

26 Yaroslavskoe shosse, Moscow, 129337

RSCI AuthorID: 1213498, Scopus: 56826221800, ResearcherID: JFA-6248-2023



I. M. Garanzha
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Igor M. Garanzha — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Metal and Wooden Structures

26 Yaroslavskoe shosse, Moscow, 129337

RSCI AuthorID: 564746, Scopus: 56437725200, ResearcherID: AAD-8595-2022



V. F. Mushchanov
Donbas National Academy of Civil Engineering and Architecture
Russian Federation

Vladimir F. Mushchanov — Doctor of Technical Sciences, Professor of the Department of Theoretical and Applied Mechanics, Vice-Rector for Research

22 Derzhavina st., Makeevka, 86123, DPR

Scopus: 55988406500, ResearcherID: AAO-8875-2021



N. S. Smirnova
Donbas National Academy of Civil Engineering and Architecture
Russian Federation

Natalia S. Smirnova — Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Metal Structures and Facilities

22 Derzhavina st., Makeevka, 86123, DPR

Scopus: 59175404500, ResearcherID: NHP-9779-2025



References

1. Vedyakov I.I., Eremeev P.G., Solovyev D.V. Scientific and technical support and standard requirements when realizing projects of buildings and structuress with increased level of responsibility. Industrial and Civil Engineering. 2018; 12:14-19. EDN VRJMYQ. (rus.).

2. Barmotin A., Dmitrenko E., Volkov A., Mashtaler S., Nedorezov A., Kazak K. et al. Information modeling when performing building surveys. Modern Industrial and Civil Construction. 2024; 20(2):93-109. EDN WFDUZE. (rus.).

3. Mushchanov V.F., Orzhekhovskiy A.N., Tseplyaev M.N., Mushchanov A.V. An integrated approach to reliability assessment of spatial metal structures. Construction: Science and Education. 2024; 14(1):6-23. DOI: 10.22227/2305-5502.2024.1.1. EDN WGPYND. (rus.).

4. Mushchanov V., Orzhehovsky A., Kashchenko M., Zubenko A. Reliability of spatial core structures of truncated large-span domes. Metall Constructions. 2023; 29:(1):47-61. EDN RWWBHA. (rus.).

5. Mushchanov V.F., Orzhehovsky A.N., Kashchenko M.P., Dudov N.V. Ensuring a regulated level of reliability of a high-responsibility steel core structure using the example of the coating of the Ilyichevets ic in Mariupol. Metall Constructions. 2025; 31(1):35-46. DOI: 10.71536/mc.2025.v31n1.4. EDN ICQFZG. (rus.).

6. Mushchanov V.F., Orzhekhovskiy A.N., Mushchanov A.V., Tseplyaev M.N. Reliability of spatial rod metal structures of high level of responsibility. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2024; 19(5):763-777. DOI: 10.22227/1997-0935.2024.5.763-777. EDN GEAKOH. (rus.).

7. Smirnova N.S. Optimization of reconstruction of overhead power lines taking into account the reliability of power supply to consumers. Makeevka, 2023; 187. (rus.).

8. Senkin N.A. Consideration of progressive collapse in the design of overhead power transmission line supports. Bulletin of Civil Engineers. 2022; 4(93):37-46. DOI: 10.23968/1999-5571-2022-19-4-37-46. EDN MXCQXB. (rus.).

9. Senkin N.A., Filimonov A.S. Interaction of structural elements in the overhead transmission power line. Housing Construction. 2024; 1-2:101-108. DOI: 10.31659/0044-4472-2024-1-2-101-108. EDN SCMQKH. (rus.).

10. Arsalan H., Zeashan H., Qi H. Monitoring of Overhead Transmission Lines : а Review from the Perspective of Contactless Technologies. Sensing and Imaging. 2017; 18(1). DOI: 10.1007/s11220-017-0172-9

11. Golikov A., Gubanov V., Garanzha I. Atypical structural systems for mobile communication towers. IOP Conference Series: Materials Science and Engineering. 2018; 365(5):052010. DOI: 10.1088/1757-899X/365/5/052010

12. Fu X., Li H.N., Li G., Dong Z.Q., Zhao M. Failure Analysis of a Transmission Line Considering the Joint Probability Distribution of Wind Speed and Rain Intensity. Engineering Structures. 2021; 233:111913. DOI: 10.1016/j.engstruct.2021.111913

13. Fu X., Wang J., Li H.N., Li J.X., Yang L.D. Full-scale Test and its Numerical Simulation of a Transmission tower under Extreme Wind Loads. Journal of Wind Engineering and Industrial Aerodynamics. 2019; 190:119-133. DOI: 10.1016/j.jweia.2019.04.011

14. Filimonov A.S. Proposals for the protection of intermediate support of 750 kV overhead power line with guy wires from progressive collapse. Series “Construction” : collection of articles by master’s and postgraduate students. 2021; 391-398. EDN LNFUUV. (rus.).

15. Tanasoglo A.V., Garanzha I.M., Fedorova S.R. Monitoring of single-post free-standing supports of overhead power linesunder the action of wind loads. Housing Construction. 2023; 12:73-78. DOI: 10.31659/0044-4472-2023-12-73-78. EDN ZSSEHX. (rus.).

16. Kondrateva O.E., Voronkova E.M., Loktio-nov O.A. Impact assessment of weather and climate events on overhead transmission lines reliability with voltages up to 110–220 kV. 2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). 2021; 1-6. DOI: 10.1109/REEPE-51337.2021.9388054

17. Garanzha I.M., Tanasoglo A.V., Ademola H.A., Pisareva M.M. Dynamic behavior of power transmission line supports under wind influence. Magazine of Civil Engineering. 2025; 18(1):13301. DOI: 10.34910/MCE.133.1


Review

For citations:


Orzhehovskiy A.N., Tanasoglo A.V., Garanzha I.M., Mushchanov V.F., Smirnova N.S. Design of steel lattice structures of power transmission lines using reliability parameters on the example of anchor-angle support U220-2+9. Construction: Science and Education. 2025;15(3):74-90. (In Russ.) https://doi.org/10.22227/2305-5502.2025.3.5

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)