Preview

Construction: Science and Education

Advanced search

Comparing the economics of electric and water underfloor heating

https://doi.org/10.22227/2305-5502.2021.1.2

Abstract

Introduction.

Using underfloor heating to maintain warm temperature inside manned rooms is a widely spread international practice. Domestic design organizations also take advantage of this solution, as it makes a positive impact on the indoor microclimate and thermal comfort. Underfloor heating outperforms traditional heating systems in terms of particular operational characteristics. The application of underfloor heating is a relevant issue, addressed by numerous publications, however, researchers tend to focus on the heat emission capacity of floors that have different constructions. The goal of this research is to analyze the economics of electric and water underfloor heating systems.

Materials and methods.

The aggregate cost method is employed to perform the economic analysis of underfloor heating systems. The co-authors have calculated capital and operating expenses, broken down by the years. The co-authors compare electric and water underfloor heating systems installed in the rooms having the floor area of 5, 10, and 20 sq. meters. The rooms are located in Moscow. Indoor heat losses are considered to be linearly dependent on the heated floor area.

Results.

The co-authors have calculated capital and operating expenses incurred in the above rooms. They have also drawn an aggregate heating cost graph for three rooms having two types of heating systems installed. The costs are broken down by the years.

Conclusions.

Although the research findings describe individual cases, they can serve as the basis for a general conclusion that the payback period of an underfloor heating system depends on the heated floor area and that electric underfloor heating systems are better for small rooms. Further studies can focus on alternative pipeline design systems, different power consumption modes of the pump depending on the circuit length, and non-continuous heating systems.

About the Authors

Egor P. Bazunov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


Valery Yu. Kravchuk
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


References

1. Basok B., Tkachenko M., Nedbailo A., Bozhko I. Исследование энергетической эффективности системы напольного отопления сухого монтажа // Technology Audit and Production Reserves. 2018. Vol. 3. Issue 1 (41). Pp. 52-57. DOI: 10.15587/2312-8372.2018.135783

2. Liu Y., Wang D., Liu J. Study on heat transfer process for in-slab heating floor // Building and Environment. 2012. Vol. 54. Pp. 77-85. DOI: 10.1016/j.buildenv.2012.02.007

3. Jin X., Zhang X., Luo Y. A calculation method for the floor surface temperature in radiant floor system // Energy and Buildings. 2010. Vol. 42. Issue 10. Pp. 1753-1758. DOI: 10.1016/j.enbuild.2010.05.011

4. Кремнева А.А., Коровина Л.С., Полуэктова В.Г. Оптимальное применение теплоизоляции для теплых полов с учетом минимизации теплопотерь в грунт на примере пеноплэкс // Градостроительство. Инфраструктура. Коммуникации. 2019. № 2 (15). С. 35-42.

5. Wu X., Zhao J., Olesen B.W., Fang L., Wang F. A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems // Energy and Buildings. 2015. Vol. 105. Pp. 285-293. DOI: 10.1016/j.enbuild.2015.07.056

6. Li Q., Chen C., Zhang Y., Lin J., Ling H. Simplified thermal calculation method for floor structure in radiant floor cooling system // Energy and Buildings. 2014. Vol. 74. Pp. 182-190. DOI: 10.1016/j.enbuild.2014.01.032

7. Wu X., Zhao J., Olesen B.W., Fang L., Wang F. A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems // Energy and Buildings. 2015. Vol. 105. Pp. 285-293. DOI: 10.1016/j.enbuild.2015.07.056

8. Cholewa T., Rosiński M., Spik Z., Dudzińska M.R., Siuta-Olcha A. On the heat transfer coefficients between heated/cooled radiant floor and room // Energy and Buildings. 2013. Vol. l66. Pp. 599-606. DOI: 10.1016/j.enbuild.2013.07.065

9. Tye-Gingras M., Gosselin L. Investigation on heat transfer modeling assumptions for radiant panels with serpentine layout // Energy and Buildings. 2011. Vol. 43. Pp. 1598-1608. DOI: 10.1016/J.ENBUILD.2011.03.004

10. Hernandez F.F., Lopez J.M.C., Gutierrez A.F., Munoz F.D. A new terminal unit combining a radiant floor with an underfloor air system: experimentation and numerical model // Energy and Buildings. 2016. Vol. 133. Pp. 70-78. DOI: 10.1016/j.enbuild.2016.09.040

11. Li H., Xi C., Kong X., Lin Z., Wang L. A comparative experimental investigation on radiant floor heating system and stratum ventilation // Sustainable Cities and Society. 2020. Vol. 52. P. 101823. DOI: 10.1016/j.scs.2019.101823

12. Клюева Н.А. Анализ систем водяного и электрического теплого пола // Современные проблемы и перспективы развития строительства, теплогазоснабжения и энергообеспечения: мат. IX Национальной конф. с Междунар. участием. Саратов, 2019. С. 141-143.

13. Королева А.Н. Выбор оптимального теплого пола для жилых помещений // Инновации природообустройства и защиты окружающей среды : мат. I Национальной науч.-практ. конф. с Междунар. участием. Саратов, 2019. С. 48-51.

14. Кантаков Р.Г. Экономическое сравнение водяного и электрического панельного отопления для жилого помещения // Дни студенческой науки: сб. докл. науч.-техн. конф. по итогам научно-исследовательских работ студентов Института инженерно-экологического строительства и механизации НИУ МГСУ. М., 2019. С. 354-358.

15. Бурмистрова С.Е., Кириллова А.А., Гаряев А.Б. Сравнение затрат на эксплуатацию водяного теплого пола и радиаторного отопления // Синергия наук. 2019. № 42. С. 501-510.

16. Низовцев М.И., Сахаров И.А. Определение тепловых и конструктивных параметров водяного теплого пола // Энерго- и ресурсоэффективность малоэтажных жилых зданий : сб. науч.-практ. конф. Новосибирск, 2013. С. 39-42.

17. Умеренкова Э.В., Умеренков Е.В., Насонова А.А., Голобоков А.С. Влияние системы «теплый пол» на параметры микроклимата помещения // Современные проблемы в строительстве: постановка задач и пути их решения : сб. науч. статей Международной научно-практ. конф. Курск, 2019. С. 180-182.

18. Юдаев И.В., Токарева А.Н., Грачева Н.Н., Панченко С.В., Даус Ю.В. Обоснование геометрических параметров системы отопления «теплый пол» в детских дошкольных учреждениях сельских территорий // Известия НВ АУК. 2019. № 4 (56). С. 290-300. DOI: 10.32786/2071-9485-2019-04-34

19. Усталов Д.С. Теплые полы. Личный опыт // Сантехника, отопление, кондиционирование. 2014. № 10. С. 46-52.

20. Causone F., Corgnati S.P., Filippi M., Olesen B.W. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load // Energy and Buildings. 2010. Vol. 42. Issue 3. Pp. 305-314. DOI: 10.1016/j.enbuild.2009.09.008

21. Hajabdollahi F., Hajabdollahi Z., Hajabdollahi H. Thermo-economic modeling and optimization of underfloor heating using evolutionary algorithms // Energy and Buildings. 2012. Vol. 47. Pp. 91-97. DOI: 10.1016/j.enbuild.2011.11.032


Review

For citations:


Bazunov E.P., Kravchuk V.Yu. Comparing the economics of electric and water underfloor heating. Construction: Science and Education. 2021;11(1):15-23. (In Russ.) https://doi.org/10.22227/2305-5502.2021.1.2

Views: 191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)