Preview

Construction: Science and Education

Advanced search

Assessment of damage and jamming ability of innovative 3D geogrid at the sand – crushed stone interface

https://doi.org/10.22227/2305-5502.2025.3.9

Abstract

Introduction. The paper presents comparative results of experimental studies of innovative 3D geogrids in comparison with traditionally produced flat geogrids Slavros SD-40 and Armoset B, used for reinforcement of soil foundations. Damageability of geogrids under compaction load, separating function of geogrids and wedging ability were evaluated during experimental studies.

Materials and methods. The wedging ability, separating function and resistance to failure of ready-made geogrids samples were evaluated in laboratory conditions using the developed design of a test container, which is a metal box with dimensions 20 × 20 × 20 cm and a metal lid with dimensions 19.5 × 19.5 × 10.5 cm with a wall thickness of 5 mm. ZIM P-10 hydraulic machine was used as a press to simulate the sealing unit.

Results. Damage test results showed that the Armoset B and Slavros SD-40 geogrid specimen sustained numerous damages in the form of rib failures, indentations and kinking of individual strands. Based on the total amount of damage and the nature of damage to the laid paper layer, as an indicator, the jamming of the stone material is minimal, characteristic tears on the sheet are observed and the penetration of the stone material through the reinforced geogrid is noticeable. For 3D geogrid, based on the number of damages on the paper layer, we can speak about a sufficient and high percentage of stone material jamming. The geogrid perfectly coped with the function of separation of loose sand and crushed stone layers. The jamming of stone material occurs above the reinforcement layer, which is very important for reinforcing interlayers and increasing the efficiency of reinforcement layers.

Conclusions. The results of experimental studies with the developed design of innovative 3D geogrid showed that this geogrid has significant prospects for its application as a reinforcing interlayer in civil engineering. More extensive experimental studies are required to assess the operational efficiency.

About the Authors

A. A. Ignatyev
Moscow Automobile and Road State Technical University (MADI)
Russian Federation

Aleksey A. Ignatyev — Candidate of Technical Sciences, Associate Professor, Director of the Department of Industry Education Development

64 Leningradsky Prospekt, Moscow, 125319

RSCI AuthorID: 652263, Scopus: 57223088598, ResearcherID: AAZ-2908-2021



I. A. Chizhikov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation

Il’ya A. Chizhikov — Candidate of Technical Sciences, Associate Professor of the Department of Urban Planning

26 Yaroslavskoe shosse, Moscow, 129337

RSCI AuthorID: 979182



References

1. Tamrakar P., Kwon J., Wayne M., Lee H. Calibration of pavement ME rutting model for geogrid stabilized roadways. Transportation Geotechnics. 2021; 31:100684. DOI: 10.1016/j.trgeo.2021.100684

2. Al-Barqawi M., Aqel R., Wayne M., Titi H., Elhajjar R. Polymer geogrids: a review of material, design and structure relationships. Materials. 2021; 14(16):4745. DOI: 10.3390/ma14164745

3. Sirotuk V.V., Levashov G.M. Technological process damageability of certain geosynthetic materials applied for reinforcing asphalt concrete pavements. Roads and Bridges. 2010; 1(23):85-96. EDN OOHCZH. (rus.).

4. Carlos D., Almeida F., Carneiro J.R., Lopes M. Influence of mechanical damage under repeated loading on the resistance of geogrids against abrasion. Mate-rials. 2021; 14(13):3544. DOI: 10.3390/ma14133544

5. Kulikova K.A., Ignatiev A.A. Estimation of damageability of flat and spatial geogrids when reinforcing materials of road pavement structural layers. Roads and Bridges. 2023; 1(49):33-53. EDN JIHUSM. (rus.).

6. Canestrari F., Belogi L., Ferrotti G., Graziani A. Shear and flexural characterization of grid-reinforced asphalt pavements and relation with field distress evolution. Materials and Structures. 2015; 48(4):959-975. DOI: 10.1617/s11527-013-0207-1

7. Vicuña L., Jaramillo-Fierro X., Cuenca P., Godoy-Paucar B., Inga-Lafebre J., Chávez J. et al. Evaluation of the effectiveness of geogrids manufactured from recycled plastics for slope stabilization — a case study. Polymers. 2024; 16(8):1151. DOI: 10.3390/polym16081151

8. Dong Y. Li, Guo H.J., Han J., Zhang J. Numerical analysis of installation damage of a geogrid with rectangular apertures. Results in Physics. 2018; 9:1185-1191. DOI: 10.1016/j.rinp.2018.04.016

9. Albuja-Sánchez J., Cóndor L., Oñate K., Ruiz S., Lal D. Influence of geogrid arrangement on the bearing capacity of a granular soil on physical models and its comparison to theoretical equations. SN Applied Sciences. 2023; 5(9). DOI: 10.1007/s42452-023-05474-w

10. Yuan H., Bai X., Zhao H., Wang J. Experimental study on the Influence of aging on mechanical properties of geogrids and bearing capacity of reinforced sand cushion. Advances in Civil Engineering. 2020; 2020. DOI: 10.1155/2020/8839919

11. Ignatiev A.A., Kurochkina K.A. The evaluation of strength properties of materials for geomeshes used as a component of bituminous concrete pavement. Transport Construction. 2017; 4:5-7. EDN ZHJYHR. (rus.).

12. Meng Y., Xu C. Effects of freeze-thaw cycles on the tensile properties of geogrids and shear behavior of geogrid-soil interface. IOP Conference Series: Earth and Environmental Science. 2024; 1335(1):012003. DOI: 10.1088/1755-1315/1335/1/012003

13. Fleury M., Kamakura G., Pitombo C., Cun-ha A., Ferreira F., Lins da Silva J. Assessing and predicting geogrid reduction factors after damage induced by dropping recycled aggregates. Sustainability. 2023; 15(13):9942. DOI: 10.3390/su15139942

14. Wang H., Kang M., Kim Y., Qamhia I., Tutumluer E., Shoup H. Evaluating different geogrid products for modulus improvement with bender element sensor technology. IOP Conference Series: Earth and Environmental Science. 2024; 1332(1):012008. DOI: 10.1088/1755-1315/1332/1/012008

15. Alwiyah S. Pengujian daya dukung tanah pasir dengan perkuatan Geogrid. Journal Saintis. 2021; 21(1):1-10. DOI: 10.25299/saintis.2021.vol21(01).6566

16. Al-Sumaiday H., Khalaf W., Muhauwiss F. Experimental investigation of bearing capacity of circular and ring footings on geogrid-reinforced cohesionless soils. Civil and Environmental Engineering. 2024; 20(1):349-363. 2024. DOI: 10.2478/cee-2024-0027

17. Wu J., Zhang F., Gao L., Hou J. Bearing capacity and reinforced mechanisms of horizontal–vertical geogrid in foundations: PFC3D Study. Buildings. 2024; 14(6):1533. DOI: 10.3390/buildings14061533

18. Koerner R.M. Designing with Geosynthetics. 5th edition. 2005; 818.

19. Patent RU No. 2652411 C1, МПК E01C 5/20. Geogrid for pavement reinforcement / A.A. Ignatiev, K.A. Kurochkina, E.A. Ronzhin; applicant Federal State Budgetary Educational Institution of Higher Education “Yaroslavl State Technical University”; application No. 2017124781 dated 11.07.2017. Published 26.04.2018. EDN RVYLRA. (rus.).

20. Kulikova K.A., Ignatyev A.A. Evaluation of the influence of the 3D geogrid rib cross-section on the wedging of stone material. Bulletin of Civil Engineers. 2024; 3(104):88-94. DOI: 10.23968/1999-5571-2023-21-3-88-94. EDN LOYAOQ. (rus.).


Review

For citations:


Ignatyev A.A., Chizhikov I.A. Assessment of damage and jamming ability of innovative 3D geogrid at the sand – crushed stone interface. Construction: Science and Education. 2025;15(3):141-157. (In Russ.) https://doi.org/10.22227/2305-5502.2025.3.9

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)