Preview

Construction: Science and Education

Advanced search

Geopolymer concrete made using large-tonnage technogenic waste

https://doi.org/10.22227/2305-5502.2021.2.2

Abstract

Introduction.

Currently, in all countries, Portland cement is used as a binder in the production of concrete, and its global production accounts for 10 % of the total carbon dioxide emitted into the atmosphere. Therefore, Portland cement can be partially or fully replaced by new cement-free binders, made of large-tonnage technogenic waste with a cementing effect, for example, by finely ground blast furnace slag, fly ash generated by thermal power plants and ash formed during the combustion of rice hulls. Aqueous alkaline solutions (NaOH and Na2SiO3 or KOH and K2SiO3) should be used as activators of setting and hardening of such binders, and calcium sulfate dihydrate can be used to adjust the setting time. Concrete containing new cement-free binders is called geopolymer concrete.

Materials and methods.

In order to reduce mixing water consumption and maintain the required workability of the fine-grained concrete mixture, a polycarboxylate superplasticizer was introduced into its composition. All raw materials, except for the superplasticizer, were of the Vietnamese origin. The following research methods were used: the composition of the geopolymer concrete mixture was analyzed using the absolute volume method, the workability of the concrete mixture was determined according to ASTM C1611-18 и TCVN 3106:2007, compressive and tensile strength of the concrete, subjected to bending, were tested pursuant to GOST 10180-2012, and the average density of concrete was tested according to GOST 12730.1-78.

Results.

The co-authors have developed the composition of the geopolymer concrete containing the alkaline cement-free binder. As a result of the heat treatment of the 28-days-old concrete for 6 hours at 100 °C, its compressive strength reaches about 60 MPa; hence, it can be used in the hot and humid climate of Vietnam.

Conclusions.

This cement-free concrete, in addition to its high strength, has good water resistance and low water absorption. This concrete has economic benefits, and its production will help to protect the environment due to the lower consumption of natural resources and the applicability of large-tonnage technogenic waste.

About the Authors

Van Lam Tang
Hanoi University of Mining and Geology
Russian Federation


Xuan Hung Ngo
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


Kim Dien Vu
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


Boris I. Bulgakov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


Sofya I. Bazhenova
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


Olga V. Aleksandrova
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


References

1. Sathawane S.H., Vairagade V.S., Kene K.S. Combine effect of rice husk ash and fly ash on concrete by 30 % cement replacement // Procedia Engineering. 2013. Vol. 51. Pp. 35-44. DOI: 10.1016/j.proeng.2013. 01.009

2. Abdel-Ghani N.T., El-Sayed H.A., El-Habak A.A. Utilization of by-pass cement kiln dust and air-cooled blast-furnace steel slag in the production of some ‘‘green” cement products // HBRC Journal. 2018. Vol. 14. Issue 3. Pp. 408-414. DOI: 10.1016/j.hbrcj.2017.11.001

3. Lei Y., Zhang Q., Nielsen C., He K. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990-2020 // Atmospheric Environment. 2011. Vol. 45. Issue 1. Pp. 147-154. DOI: 10.1016/j.atmosenv.2010.09.034

4. Каргин А.А., Маликов И.М. Геополимерный бетон // Россия молодая : сб. мат. XI Всеросс. науч.-практ. конф. с междунар. участием. 2019. С. 60613.

5. Гончарова М.А., Матченко Н.А. Разработка составов геополимерного бетона для конструкционного материала // Научные исследования: от теории к практике. 2015. Т. 2. № 4 (5). С. 15-18.

6. Pham Chi Сuong. The use of waste from the metallurgical industry in Vietnam // Journal of Science of Vietnam. 2012. Vol. 6. Issue 10. Pp. 52-54.

7. Танг Ван Лам, Нго Суан Хунг, Булгаков Б.И., Александрова О.В., Ларсен О.А., Орехова А.Ю. и др. Использование золошлаковых отходов в качестве дополнительного цементирующего материала // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2018. № 8. C. 19-27. DOI: 10.12737/article_5b6d58455b5832.12667511

8. Танг Ван Лам, Булгаков Б.И., Александрова О.В., Ларсен О.А. Возможность использования зольных остатков для производства материалов строительного назначения во Вьетнаме // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2017. № 6. C. 6-12. DOI: 10.12737/article_5926a059214ca0.89600468

9. Горбунов Г.И., Расулов О.Р. Использование рисовой соломы в производстве керамического кирпича // Вестник МГСУ 2014. № 11. С. 128-136.

10. Lam Van Tang, Hung Xuan Ngo, Dien Vu Kim, Bulgakov B.I., Aleksandrova O.V. Effect of complex organo-mineral modifier on the properties of corrosion-resistant concrete // MATEC Web of Conferences. 2018. Vol. 251. P. 01005. DOI: 10.1051/matecconf/ 201825101005

11. Si -Huy Ngo, Trong-Phuoc Huynh, Thanh-Tam Thi Le, Ngoc-Hang Thi Mai. Effect of high loss on ignition-fly ash on properties of concrete fully immersed in sulfate solution // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 371. P. 012007. DOI: 10.1088/1757-899X/371/1/012007

12. Tang Van Lam, Bulgakov B., Bazhenov Y., Aleksandrova O., Pham Ngoc Anh. Effect of rice husk ash on hydrotechnical concrete behavior // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 365. P. 032007. DOI: 10.1088/1757-899X/ 365/3/032007

13. Ngo Van Toan. Research on the production of high-strength concrete using fine sand and mineral additives mixed with activated blast-furnace slag and rice husk ash // Magazine Building Materials - Environment. 2012. No. 4. Pp. 36-45.

14. Viet-Thien-An Van, Rößler C., Danh-Dai Bui, Ludwig H.-M. Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete // Cement and Concrete Composites. 2014. Vol. 53. Pp. 270-278. DOI: 10.1016/j.cemconcomp. 2014.07.015

15. Saad S.A., Nuruddin M.F., Shafiq N., Ali M. Pozzolanic reaction mechanism of rice husk ash in concrete - a review // Applied Mechanics and Materials. 2015. Vol. 773-774. Pp. 1143-1147. DOI: 10.4028/www.scientific.net/AMM.773-774.1143

16. Ануфриева Е.В. Коррозионностойкий бетон для гидротехнического строительства // Градостроительные аспекты устойчивого развития крупных городов. 2009. № 93. С. 537-541.

17. Танг Ван Лам, Нго Суан Хунг, Ву Ким Зиен, Нгуен Чонг Чык, Булгаков Б.И., Баженова О.Ю. и др. Влияние водовяжущего отношения и комплексной органоминеральной добавки на свойства бетона для морских гидротехнических сооружений // Промышленное и гражданское строительство. 2019. № 3. C. 11-21. DOI: 10.33622/0869-7019.2019.03.11-21

18. Santhanam M., Cohen M.D., Olek J. Differentiating seawater and groundwater sulfate attack in Portland cement mortars // Cement and Concrete Research. 2006. Vol. 36. Issue 12. Pp. 2132-2137. DOI: 10.1016/j.cemconres.2006.09.011

19. Chindaprasirt P., Kanchanda P., Sathonsaowaphak A., Cao H.T. Sulfate resistance of blended cements containing fly ash and rice husk ash // Construction and Building Materials. 2007. Vol. 21. Issue 6. Pp. 1356-1361. DOI: 10.1016/j.conbuildmat. 2005.10.005

20. Thomas R.J., Peethamparan S. Alkali-activated concrete: Engineering properties and stress-strain behavior // Construction and Building Materials. 2015. Vol. 93. Pp. 49-56. DOI: 10.1016/j.conbuildmat. 2015.04.039

21. Liu Y., Zhu W., Yang E.H. Alkali-activated ground granulated blast-furnace slag incorporating incinerator fly ash as a potential binder // Construction and Building Materials. 2016. Vol. 112. Pp. 1005-1012. DOI: 10.1016/j.conbuildmat.2016.02.153

22. Фаликман В.Р., Охотникова К.Ю. Геополимерные вяжущие и бетоны в современном строительстве // Международный научно-исследовательский журнал. 2015. № 4-1 (35). С. 93-97.


Review

For citations:


Tang V.L., Ngo X.H., Vu K.D., Bulgakov B.I., Bazhenova S.I., Aleksandrova O.V. Geopolymer concrete made using large-tonnage technogenic waste. Construction: Science and Education. 2021;11(2):17-37. (In Russ.) https://doi.org/10.22227/2305-5502.2021.2.2

Views: 198


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)