Preview

Construction: Science and Education

Advanced search

Analysis of design features based on the application of modular elements of maximum readiness

https://doi.org/10.22227/2305-5502.2021.2.5

Abstract

Introduction.

In the middle of the 20th century, technological progress made it possible to enlarge the building elements of buildings as much as possible, which led to the development of new industrial construction systems and increased production rates. However, to date, the issue has not been completely resolved and remains relevant. Modular construction is not sufficiently widely spread today, but many design experts predict its widespread introduction in the near future. The factor that decelerates the development of modular construction is the lack of theoretical foundations in the field of modular design, as well as significant differences from traditional design approach.

Materials and methods.

The purpose of this work is to develop the theoretical fundamentals of modular design based on the study of regulatory documents, Russian and foreign sources of research works, as well as the implemented projects. The task is to determine the fundamental features of modular elements of maximum readiness: principles of modular design, parameters of a modular element, advantages and disadvantages of a modular system, features of the design processes.

Results.

The theoretical basis of modular design includes basic concepts, principles and features; the conceptual design process is described using the case of development of an information model; parameters of modular elements of maximum readiness are presented, and the influence of modular items on the life cycle of a construction facility is analyzed.

Conclusions.

The presented system of principles of design based on modular elements of maximum readiness and parameters of modular elements allow us to systematize the established theoretical aspects of modularity, which make it possible to make modular buildings. The author formulates a new approach to design, which affects the entire life cycle and serves as the basis for new areas of engineering activities and scientific research.

About the Author

Angelina O. Rybakova
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


References

1. Брагинец С.В., Бахчевников О.Н., Бенова Е.В. Преимущества модульного проектирования малых комбикормовых заводов // Вестник Курской государственной сельскохозяйственной академии. 2018. № 6. С. 141-145. DOI: 10.24412/FeYK7B0nROQ

2. Дубовицкая М.М. Внутренние организационно-технологические процессы в сфере строительства: построение моделей с использованием современных инновационных технологий // Сметно-договорная работа в строительстве. 2020. № 7. С. 56-62.

3. Николайчук С.Е. Обзор самых эффективных инновационных инструментов в строительстве // Сметно-договорная работа в строительстве. 2019. № 9. С. 48-51.

4. Naranje V., Swarnalatha R. Design of Tracking System for Prefabricated Building Components using RFID Technology and CAD Model // Procedia Manufacturing. 2019. Vol. 32. Pp. 928-935. DOI: 10.1016/j.promfg.2019.02.305

5. Бородулин К.В. Внедрение технологий информационного моделирования в процесс эксплуатации зданий и сооружений // Молодой ученый. 2019. № 2 (240). С. 200-202.

6. Pittau F., Malighetti L.E., Iannaccone G., Masera G. Prefabrication as large-scale efficient strategy for the energy retrofit of the housing stock: An Italian case study // Procedia Engineering. 2017. Vol. 180. Pp. 1160-1169. DOI: 10.1016/j.proeng.2017.04.276

7. Gao Y., Tian X.-L. Prefabrication policies and the performance of construction industry in China // Journal of Cleaner Production. 2020. Vol. 253. P. 120042. DOI: 10.1016/j.jclepro.2020.120042

8. Андреева А.Б. Актуальность использования технологий информационного моделирования на всех этапах «жизненного цикла» объекта капитального строительства // Уральский научный вестник. 2019. Т. 3. № 2. С. 63-66.

9. Третьякова З.О., Воронина М.В. Использование новых информационных технологий в строительном моделировании // Современное образование: содержание, технологии, качество. 2019. Т. 1. С. 363-365.

10. Jang S., Lee G. Process, productivity, and economic analyses of BIM-based multi-trade prefabrication - a case study // Automation in Construction. 2018. Vol. 89. Pp. 86-98. DOI: 10.1016/j.autcon.2017.12.035

11. Hwang B.-G., Ngo J., Wan Yi Her P. Integrated Digital Delivery: Implementation status and project performance in the Singapore construction industry // Journal of Cleaner Production. 2020. Vol. 262. P. 121396. DOI: 10.1016/j.jclepro.2020.121396

12. Arashpour M., Kamat V., Bai Yu., Wakefield R., Abbasi B. Optimization modeling of multi-skilled resources in prefabrication: Theorizing cost analysis of process integration in off-site construction // Automation in Construction. 2018. Vol. 95. Pp. 1-9. DOI: 10.1016/j.autcon.2018.07.027

13. Goh M., Goh Ya.M. Lean production theory-based simulation of modular construction processes // Automation in Construction. 2019. Vol. 101. Pp. 227-244. DOI: 10.1016/s0926-5805(02)00086-9

14. Чибирикова Д.А., Атаев Б.С., Мельникова О.Г. Модульное проектирование и конструирование многоквартирных домов с использованием готовых компонентов // Актуальные проблемы и перспективы развития строительного комплекса: сб. тр. Междунар. научно-практ. конф: в 2-х ч. Волгоград, 2020. С. 82-86.

15. Kasperzyk C., Kim M.-С., Brilakis I. Automated re-prefabrication system for buildings using robotics // Automation in Construction. 2017. Vol. 83. Pp. 184-195. DOI: 10.1016/j.autcon.2017.08.002

16. Мануковский А.Ю., Курдюков Д.П., Коротков В.А. Опыт применения элементов технологии информационного моделирования // Актуальные направления научных исследований XXI века: теория и практика. 2020. Т. 8. № 1 (48). С. 100-105. DOI: 10.34220/2308-8877-2020-8-1-100-105

17. Lu W., Chen K., Xue F., Pan W. Searching for an optimal level of prefabrication in construction: an analytical framework // Journal of Cleaner Production. 2018. Vol. 201. Pp. 236-245. DOI: 10.1016/j.jclepro.2018.07.319

18. Ракова А.В., Иливанова Е.В. Новшества в строительстве // Образование: профессиональный дебют: сб. мат. V Междунар. студ. научно-практ. конф. Мелеуз, 2019. С. 261-264.

19. Anton A., Reiter L., Wangler T., Frangez V., Flatt R.J., Dillenburger B. A 3D concrete printing prefabrication platform for bespoke columns // Automation in Construction. 2021. Vol. 122. P. 103467. DOI: 10.1016/j.autcon.2020.103467

20. Lee J., Kim J. BIM-Based 4D Simulation to Improve Module Manufacturing Productivity for Sustainable Building Projects // Sustainability. 2017. Vol. 9 (3). P. 426. DOI: 10.3390/su9030426

21. Lyu Z., Lin P., Guo D., Huang G.Q. Towards zero-warehousing smart manufacturing from zero-inventory just-in-time production // Robotics and Computer-Integrated Manufacturing. 2020. Vol. 64. P. 101932. DOI: 10.1016/j.rcim.2020.101932

22. Рашев В.С., Астафьева Н.С., Рогожкин Л.С., Григорьев В.Ю. Анализ внедрения технологии информационного моделирования в российских строительных компаниях по проектированию и строительству инженерных систем // Вестник евразийской науки. 2020. Т. 12. № 3. С. 11.

23. Плешивцев А.А. Применение технологий информационного моделирования для формирования функционального качества архитектурных (строительных) объектов // Инновации и инвестиции. 2020. № 10. С. 189-192.


Review

For citations:


Rybakova A.O. Analysis of design features based on the application of modular elements of maximum readiness. Construction: Science and Education. 2021;11(2):65-77. (In Russ.) https://doi.org/10.22227/2305-5502.2021.2.5

Views: 236


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)