The use of natural gas reduction schemes on the basis of the pressure regulator and monitor
https://doi.org/10.22227/2305-5502.2021.3.8
Abstract
Introduction.
The relevance of the topic is explained by the growing use of natural gas both in terms of domestic consumption (due to the expansion of gas supply areas) and in terms of industrial consumption (introduction of more complex technological processes), which significantly tightens the requirements for failure-free and reliable gas supply systems. The issues of reliability and sustainability of operation of gas distribution systems directly affect the efficiency of natural gas transportation to end consumers. Key factors should also include the assurance and maintenance of operational parameters of gas distribution networks and gas-using equipment in the optimal technological condition. The purpose of the study is to assess the economic efficiency of proposed gas pressure reduction systems with account taken of the value of capital expenditures into their installation, purchase of equipment and devices, involved in the arrangement of gas pressure reduction lines.
Materials and methods.
The co-authors have used the system analysis and synthesis of complex structured gas pressure reduction complexes, methods of computational mathematics, synthesis of new engineering solutions.
Results.
Gas pressure reduction systems have advantages over standard patterns currently used by most gas distribution stations and pressure reduction units. However, systems, featuring one pressure reduction line, have a narrow range of application. Higher reliability and failure-free operation are demonstrated by the systems having a redundant pressure reduction line, consisting of the same set of equipment and designed for 100 % capacity of the principal reduction line. In addition, the installation of these reduction systems takes less time, if compared with a standard system, which is not unimportant in the context of mass production.
Conclusions.
The analysis of the established gas reduction systems used at gas distribution stations and pressure reduction units allows to choose the equipment operating in the range of medium and high pressure with one-step gas pressure reduction in order to develop an optimal reduction system. Given the results of the feasibility study of each system, the conclusion is made in terms of the expediency of their application from the standpoint of technological efficiency and cost effectiveness.
About the Authors
Oksana N. MedvedevaRussian Federation
Aleksander Yu. Chilikin
Russian Federation
References
1. Кучмин А.И. Интеграция регулятора давления газа РДП с ускорителем в системы газоснабжения со схемой редуцирования «Регулятор + монитор» // Газовые технологии. 2018. № 1. С. 2-4.
2. Карякин Е.А. Промышленное газовое оборудование: справочник. Саратов : Газовик, 2013. 1279 с.
3. Чернышев А.В., Васильева В.А., Крутиков А.А., Коленко Н.Н. Исследование динамической нагрузки, действующей на рабочий орган пневматического регулирующего исполнительного устройства // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2011. № S. С. 150-166.
4. Лойцянский Л.Г. Механика жидкости и газа: учебник для вузов. М. : Дрофа, 2003. 840 с.
5. Кондратьева Т.Ф. Предохранительные клапаны. Л. : Машиностроение, 1976. 231 с.
6. Шур И.А. Газорегуляторные пункты и установки. Л. : Недра, 1985. 288 с.
7. Баясанов Д.Б. Автоматическое регулирование и управление в городских газовых сетях. М. : Стойиздат, 1970. 192 с.
8. Баясанов Д.Б., Ионин А.А. Распределительные системы газоснабжения. М. : Стройиздат, 1977. 407 с.
9. Данилов А.А. Автоматизированные газораспределительные станции. СПб. : Химиздат, 2004. 542 с.
10. Ионин А.А. Газоснабжение. М. : Лань, 2021. 448 с.
11. Куприянов М.С. Рациональные системы газоснабжения городов. М. : Стройиздат, 1971. 143 с.
12. Левин А.М. Расчетные режимы давления газа в сетях низкого давления // Газовая промышленность. 1956. № 4. С. 24-30.
13. Медведева О.Н., Жмуров А.В., Поляков А.С. Обоснование схем редуцирования газа на газораспределительных станциях // Научный вестник Воронежского государственного архитектурно-строительного университета. Строительство и архитектура. 2014. № 4 (36). С. 39-44.
14. Medvedeva O.N., Polyakov A.S., Kochetkov A.V. Technical solutions to reduce natural-gas pressure at gas-distribution stations // Chemical and petroleum engineering. 2017. Vol. 53. Issue 7-8. Pp. 469-473. DOI: 10.1007/s10556-017-0365-z
15. Медведева О.Н. Оптимизация структуры распределения газового топлива // Вестник гражданских инженеров. 2009. № 4 (21). С. 73-76.
16. Торчинский Я.М. Оптимизация проектируемых и эксплуатируемых газораспределительных систем. Л. : Недра, 1988. 239 с.
17. Sokovnin O.M., Zagoskina N.V., Zagoskin S.N. Using a Thermodynamic Approach to Estimate a Temperature Drop of Natural Gas in a Pressure Regulator // Journal of Applied Mechanics and Technical Physics. 2019. Vol. 60. Issue 3. Pp. 451-456. DOI: 10.1134/S0021894419030064
18. Jin Z.-J., Wei L., Chen L.-l., Qian J.-Y., Zhang M. Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve // Journal of Zhejiang University SCIENCE A. 2013. Vol. 14. Issue 2. Pp. 137-146. DOI: 10.1631/jzus.A1200146
19. Chattopadhyay H., Kundu A., Saha B.K., Gangopadhyay T. Analysis of flow structure inside a spool type pressure regulating valve // Energy Conversion and Management. 2012. Vol. 53. Issue 1. Pp. 196-204. DOI: 10.1016/j.enconman.2011.08.021
20. Carnevali L., Paolieri M., Tarani F., Vicario E., Tadano K. Modeling and Evaluation of Maintenance Procedures for Gas Distribution Networks with Time-Dependent Parameters // Lecture Notes in Computer Science. 2014. Pp. 304-315. DOI: 10.1007/978-3-319-10557-4_34
21. Hübner M., Haubrich HJ. Long-Term Pressure-Stage Comprehensive Planning of Natural Gas Networks // Handbook of Networks in Power Systems II. 2012. Pp. 37-59. DOI: 10.1007/978-3-642-23406-4_2
22. Bondarenko V.L., Simonenko Y.М., Tishko D.P. Generation of Cold and Heat in Vortex Tubes during Pressure Reduction of Natural Gas // Chemical and Petroleum Engineering. 2020. Vol. 56. Issue 3-4. Pp. 272-279. DOI: 10.1007/s10556-020-00769-w
23. Стадник Д.М., Свербилов В.Я., Макарьянц Г.М., Макарьянц М.В. Обеспечение устойчивости регулятора давления газа непрямого действия посредством установки дросселя на входе // Вестник Самарского государственного аэрокосмического университета. 2012. № 4 (35). С. 184-192.
24. Rouainia G., Rouainia M., Metatla A. Over Pressure Risk Mitigation with SCADA in a Natural Gas Distribution System // Universal Journal of Mechanical Engineering. 2020. Vol. 8. Pp. 21-28. DOI: 10.13189 / ujme.2020.080103
25. Deveau J., Hughes B. Over-Pressure Protection for Natural Gas Distribution Systems // Pipeline & Gas Journal. 2019. Pp. 24-26.
26. Xie J., Dubljevic S. Discrete-time modeling and output regulation of gas pipeline networks // Journal of Process Control. 2021. Vol. 98. Pp. 30-40. DOI: 10.1016/j.jprocont.2020.12.002
27. Tekir M., Gedik E., Arcaklioglu E., Calapkulu M., Kasap M. CFD analyses of a two-stage natural gas pressure regulator // Mugla Journal of Science and Technology. 2016. Vol. 2. Issue 1. Pp. 14-19. DOI: 10.22531/muglajsci.269966
28. Kondrashov Yu., Ilyukhin V., Balyaba M. To the question of the design of direct-flow gas pressure regulator direct actions // Journal of Dynamics and Vibroacoustics. 2019. Vol. 5. Issue 1. Pp. 22-29. DOI: 10.18287/2409-4579-2019-5-1-22-29
29. Nourian R., Meysam Mousavi S., Raissi S. A fuzzy expert system for mitigation of risks and effective control of gas pressure reduction stations with a real application // Journal of Loss Prevention in the Process Industries. 2019. Vol. 59. Pр. 77-90. DOI: 10.1016/j.jlp.2019.03.003
30. Xiong Ya., An Sh., Xu Peng, Ding Yu. et al. A novel expander-depending natural gas pressure regulation configuration: Performance analysis // Applied Energy. 2018. Vol. 220. Pp. 21-35. DOI: 10.1016/j.apenergy.2018.03.026
31. Steiner K., Schrader A., Kirchner J., Ziegenbalg J. Gas pressure regulation stations according to DVGW technical code G 491:2020, part 2 // Erdgas & Verwandtes. 2020. Vol. 9. Pp. 33-40.
32. Zhong Yu., Xie W., Zhang X. A neural network compound control algorithm for complex nonlinear electric gas pressure regulating system // 2016. Chinese Control and Decision Conference (CCDC). 2016. Pp. 3055-3060. DOI: 10.1109 / CCDC.2016.7531506
Review
For citations:
Medvedeva O.N., Chilikin A.Yu. The use of natural gas reduction schemes on the basis of the pressure regulator and monitor. Construction: Science and Education. 2021;11(3):131-150. (In Russ.) https://doi.org/10.22227/2305-5502.2021.3.8