Preview

Construction: Science and Education

Advanced search

Numerical calculation of steel-concrete structures

https://doi.org/10.22227/2305-5502.2022.1.5

Abstract

Introduction.

Steel-concrete structures are composite systems composed of steel beams and a reinforced concrete slab. The reliable transfer of shear forces between the beam and the slab is required for the structure to behave efficiently. Towards this end, anchoring devices are used to ensure a connection between the beam and the slab. The design of a steel-concrete beam, composed of a reinforced concrete slab and steel beams, having bent sections, is considered. The steel-concrete beam is a system of galvanized bent steel beams placed in parallel and partially embedded in the 90 mm thick concrete slab made of B25 concrete. Shear forces are transmitted due to adhesion between galvanized steel and concrete without anchoring devices or the additional treatment of the beam surface.

Materials and methods.

The samples, whose flat galvanized plate had been embedded in concrete, were tested to identify actual adhesion forces. Finite element models (FEM), developed using various software packages, were assessed. FEM parameters that ensured the accuracy, acceptable for practical use, were identified.

Results.

The strength of adhesion between the steel plate and concrete was experimentally identified for different options of its attachment to concrete. The mesh pattern was identified for the plate for the case when 3D finite elements were used.

Conclusions.

A steel-concrete beam with a span of 6-8 m, bent galvanized sections partially embedded in the reinforced concrete slab with a thickness of 90 mm was developed. The author experimentally identified the shear resistance of a galvanized steel plate embedded in concrete, which reached 0.248 to 0.415 MPa depending on how the surface of the steel plate embedded in concrete was prepared. Numerical models were tested using different computational packages designated for the calculation of steel-reinforced concrete beams. The author suggests FEM improvements on the basis of numerical calculation methods applied with due regard for the experimental data obtained during the testing of the full-scale structure.

About the Author

Alexander R. Tusnin
Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


References

1. Бабалич В.С., Андросов Е.Н. Сталежелезобетонные конструкции и перспектива их применения в строительной практике России // Успехи современной науки. 2017. Т. 4. № 4. С. 205-208.

2. Кибирева Ю.А., Астафьева Н.С. Применение конструкций из сталежелезобетона // Экология и строительство. 2018. № 2. C. 27-34. DOI: 10.24411/2413-8452-2018-10004

3. Kanchanadevi A., Ramanjaneyulu K., Gandhi P. Shear resistance of embedded connection of composite girder with corrugated steel web // Journal of Constructional Steel Research. 2021. Vol. 187. P. 106994. DOI: 10.1016/j.jcsr.2021.106994

4. Альхименко А.И., Ватин Н.И., Рыбаков В.А. Технология легких стальных тонкостенных конструкций. СПб. : Изд-во СПбОДЗПП, 2008. 26 с.

5. Теплова Ж.С., Виноградова Н.А. Прочность сталежелезобетонных образцов при центральном сжатии // Строительство уникальных зданий и сооружений. 2015. № 5 (32). С. 29-38.

6. Ростовых Г.Н. Совершенствование методики расчета гибких упоров в конструкциях сталежелезобетонных мостов // Известия Петербургского университета путей сообщения. 2007. № 3 (12). С. 79-87.

7. Крылов С.Б., Семенов В.А., Конин Д.В., Крылов А.С., Рожкова Л.С. О новом Руководстве по проектированию сталежелезобетонных конструкций (в развитие СП 266.13330.2016 Конструкции сталежелезобетонные. Правила проектирования) // Academia. Архитектура и строительство. 2019. № 1. C. 99-106. DOI 10.22337/2077-9038-2019-1-99-106

8. Suwaed A.S.H., Karavasilis T.L. Demountable steel-concrete composite beam with full-interaction and low degree of shear connection // Journal of Constructional Steel Research. 2020. Vol. 171. P. 106152. DOI: 10.1016/j.jcsr.2020.106152

9. Colajanni P., Mendola L.L., Monaco A. Review of push-out and shear response of hybrid steel-trussed concrete beams // Buildings. 2018. Vol. 8. Issue 10. P. 134. DOI: 10.3390/buildings8100134

10. Рыбаков В.А. Современные методы расчета металлоконструкций из тонкостенных профилей // Стройметалл. 2007. № 2 (2). С. 36-38.

11. Hsu C.T.T., Punurai S., Punurai W., Majdi Y. New composite beams having cold-formed steel joists and concrete slab // Engineering Structures. 2014. Vol. 71. Pp. 187-200. DOI: 10.1016/j.engstruct.2014.04.011

12. Ahmed I.M., Tsavdaridis K.D. The evolution of composite flooring systems: applications, testing, modelling and Eurocode design approaches // Journal of Constructional Steel Research. 2019. Vol. 155. Pp. 286-300. DOI: 10.1016/j.jcsr.2019.01.007

13. Панова Е.С., Сергеев Е.И. Особенности расчета сталежелезобетонных конструкций // Научный взгляд в будущее. 2019. Т. 1. № 14. С. 72-75. DOI: 10.30888/2415-7538.2019-14-01-005

14. Reginato L.H., Tamayo J.L.P., Morsch I.B. Finite element study of effective width in steel-concrete composite beams under long-term service loads // Latin American Journal of Solids and Structures. 2018. Vol. 15. Issue 8. DOI: 10.1590/1679-78254599

15. Tamayo J.L.P., Franco M.I., Morsch I.B., Désir J.M., Wayar A.M.M. Some aspects of numerical modeling of steel-concrete composite beams with prestressed tendons // Latin American Journal of Solids and Structures. 2019. Vol. 16. Issue 7. DOI: 10.1590/1679-78255599

16. Alsharari F., El-Zohairy A., Salim H., El-Sisi A.E. Numerical investigation of the monotonic behavior of strengthened Steel-Concrete composite girders // Engineering Structures. 2021. Vol. 246. P. 113081. DOI: 10.1016/j.engstruct.2021.113081

17. Jurkiewiez B., Braymand S. Experimental study of a pre-cracked steel-concrete composite beam // Journal of Constructional Steel Research. 2007. Vol. 63. Issue 1. Pp. 135-144. DOI: 10.1016/j.jcsr.2006.03.013

18. Ахрамочкина Т.И. Теоретические и экспериментальные исследования сталежелезобетонных конструкций с применением гнутых стальных профилей // Строительство: наука и образование. 2021. Т. 11. № 4. С. 27-40. DOI: 10.22227/2305-5502.2021.4.3

19. Биргер И.А., Пановко Я.Г. Прочность, устойчивость, колебания : справочник в 3-х томах. Т. 1. М. : Машиностроение, 1968. 831 с.


Review

For citations:


Tusnin A.R. Numerical calculation of steel-concrete structures. Construction: Science and Education. 2022;12(1):61-73. (In Russ.) https://doi.org/10.22227/2305-5502.2022.1.5

Views: 207


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)