An integrated approach to the assessment of construction life cycles using software packages at the design stage
https://doi.org/10.22227/2305-5502.2022.1.7
Abstract
Introduction.
The article focuses on the relevance of the Life Cycle Assessment (LCA) method, used to quantify the environmental impact of a construction project at the design stage. LCA must be addressed in the process of designing buildings that will apply for green building certificates. The use of LCA software is an essential factor for obtaining LCA scores required for the majority of green building certificates.
Materials and methods.
The authors take advantage of various software packages, that make calculations and assess carbon emissions at each project stage. One of the software packages used by the authors is One Click LCA (2015).
Results.
The results of carbon emission calculations, made using One Click LCA (2015), are presented graphically in the form of carbon emission charts broken down by the life cycle stages (LCS); structural elements presented as comparative charts depending on different characteristics. The software allows assigning categories to buildings depending on their carbon emissions and impact parameters such as the Global warming potential (GWP), the Ozone Depletion Potential (ODP), the Acidification Potential (AP), the Eutrophication Potential (EP), depletion of non-renewable energy sources, etc.
Conclusions.
Software packages, used to assess life cycles of buildings, accelerate the calculation of carbon emissions, which can, in turn, streamline the selection of optimal engineering solutions for construction projects and minimize environmental impacts of buildings. It’s been found that accurate LCA calculations require comprehensive information about construction projects, including data on construction materials, energy and water consumption, as well as construction site operations. In the context of Russia, calculations are more problematic, since most manufacturers do not have construction materials databases, that contain information on carbon emissions. If manufacturers invest in the issuance of environmental product declarations (EPD), calculations of carbon emissions will be trustworthy.
About the Authors
Aksin’ya V. KalininaRussian Federation
Marina V. Petrochenko
Russian Federation
References
1. Ковалев А.О. Методы оценки экологического воздействия на городскую среду // Символ науки : международный научный журнал. 2016. № 11-3 (23). С. 83-86.
2. Ефимов В.И. Мифы и реальность углеродного следа // Ресурсная экономика, изменение климата и рациональное природопользование : мат. XVI Междунар. науч.-практ. конф. Российского общества экологической экономики. 2021. C. 60-62.
3. Лотникова Д.Ю. «Зеленая трансформация» России в рамках глобального тренда на декарбонизацию // Электронный сетевой политематический журнал «Научные труды КубГТУ». 2021. № 3. С. 62-71.
4. Крутилова М.О. Направления совершенствования экономических механизмов минимизации выбросов парниковых газов в течение жизненного цикла здания // Экономика строительства и природопользования. 2018. № 1 (66). С. 63-71.
5. Мейрембаев А.С. Энергоэффективное проектирование зданий в контексте жизненного цикла здания // Наука и образование сегодня. 2020. № 6-1 (53). С. 92-93.
6. Гусева Т.В., Щелчков К.А. Декарбонизация промышленности: аспекты нормирования российских предприятий // Ресурсная экономика, изменение климата и рациональное природопользование : мат. XVI Междунар. науч.-практ. конф. Российского общества экологической экономики. 2021. С. 49-50.
7. Buyle M., Braet J., Audenaert A. Life cycle assessment in the construction sector: A review // Renewable and Sustainable Energy Reviews. 2013. Vol. 26. Pp. 379-388. DOI: 10.1016/j.rser.2013.05.001
8. Santos R., Costa A.A., Silvestre J.D., Vandenbergh T., Pyl L. BIM-based life cycle assessment and life cycle costing of an office building in Western Europe // Building and Environment. 2020. Vol. 169. P. 106568. DOI: 10.1016/j.buildenv.2019.106568
9. Dieterle M., Viere T. Bridging product life cycle gaps in LCA & LCC towards a circular economy // Procedia CIRP. 2021. Vol. 98. Pp. 354-357. DOI: 10.1016/j.procir.2021.01.116
10. Семенова С.А., Мельникова Е.В. Экологическая целесообразность применения контрактов LCA в градостроительной деятельности // Экология урбанизированных территорий. 2020. № 1. С. 93-100. DOI: 10.24411/1816-1863-2020-11093
11. Vigovskaya A., Aleksandrova O., Bulgakov B. Life cycle assessment (LCA) in building materials industry // MATEC Web of Conferences. 2017. Vol. 106. P. 08059. DOI: 10.1051/matecconf/201710608059
12. Vigovskaya A., Aleksandrova O., Bulgakov B. Life Cycle Assessment (LCA) of a LEED certified building // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 365 (2). P. 022007. DOI: 10.1088/1757-899X/365/2/022007
13. Veselka J., Nehasilová M., Dvořáková K., Ryklová P., Volf M., Růžička J. et al. Recommendations for developing a BIM for the purpose of LCA in green building certifications // Sustainability. 2020. Vol. 12 (15). P. 6151. DOI: 10.3390/su12156151
14. Cabeza L.F., Barreneche C., Miró L., Morera J.M., Bartolí E., Fernandez A.I. Low carbon and low embodied energy materials in buildings: A review // Renewable and Sustainable Energy Reviews. 2013. Vol. 23. Pp. 536-542. DOI: 10.1016/j.rser.2013.03.017
15. Лапидус А.А., Македонска Р.Л. Оценка экологического показателя при устройстве строительной площадки // Строительное производство. 2019. № 3. С. 4-10.
16. Li X., Zhang Z., Zhu Y. An LCA-based environmental impact assessment model for construction processes // Building and Environment. 2010. Vol. 45. Issue 3. Pp. 766-775. DOI: 10.1016/j.buildenv.2009.08.010
17. Gao H., Koch C., Wu Y. Building information modelling based building energy modelling: A review // Applied Energy. 2019. Vol. 238. Pp. 320-343. DOI: 10.1016/j.apenergy.2019.01.032
18. Röck M., Hollberg A., Habert G., Passer A. LCA and BIM: Visualization of environmental potentials in building construction at early design stages // Building and Environment. 2018. Vol. 140. Pp. 153-161. DOI: 10.1016/j.buildenv.2018.05.006
19. Cavalliere C., Habert G., Dell’Osso G.R., Hollberg A. Continuous BIM-based assessment of embodied environmental impacts throughout the design process // Journal of Cleaner Production. 2019. Vol. 211. Pp. 941-952. DOI: 10.1016/j.jclepro.2018.11.247
20. Obrecht T.P., Röck M., Hoxha E., Passer A. BIM and LCA Integration: A systematic literature review // Sustainability. 2020. Vol. 12 (14). P. 5534. DOI: 10.3390/su12145534
21. Hollberg A., Genova G., Habert G. Evaluation of BIM-based LCA results for building design // Automation in Construction. 2020. Vol. 109. P. 102972. DOI: 10.1016/j.autcon.2019.102972
22. Hollberg A., Kiss B., Röck M., Soust-Verdaguer B., Wiberge A.H., Lasvaux S. et al. Review of visualising LCA results in the design process of buildings // Building and Environment. 2021. Vol. 190. P. 107530. DOI: 10.1016/j.buildenv.2020.107530
23. Ramesh T., Prakash R., Shukla K. Life cycle energy analysis of buildings: An overview // Energy and Buildings. 2010. Vol. 42. Pp. 1592-1600. DOI: 10.1016/j.enbuild.2010.05.007
Review
For citations:
Kalinina A.V., Petrochenko M.V. An integrated approach to the assessment of construction life cycles using software packages at the design stage. Construction: Science and Education. 2022;12(1):88-100. (In Russ.) https://doi.org/10.22227/2305-5502.2022.1.7