Calculation methods for investigating the reinforcement of sluice chamber walls by basalt-composite prestressed reinforcement taking into account relevant data on their operational condition
https://doi.org/10.22227/2305-5502.2022.3.2
Abstract
Introduction.
Calculation studies have shown that due to the long-term operation of hydraulic structures of the sluice, opening of horizontal and vertical construction joints, as well as corrosion of reinforcement at the rear edge of the reinforced concrete wall of the sluice in the areas of horizontal construction joints, the bearing capacity of the structure as a whole is reduced. In this regard, it is necessary to strengthen the structure, the methodology of which is given in this study.
Materials and methods.
The analysis of scientific and technical documentation has been made, instrumental examination of the state of structures has been carried out, a spatial mathematical model has been developed on the basis of the finite-element method. Multivariant calculated researches of the actual stressed-strained state (SSS) of structures have been made. Calculation studies of the SSS structures were performed taking into account the reinforcement of prestressed basalt composite reinforcement (BCR).
Results.
Visual and instrumental inspection showed a presence of cracking on the front face of the reinforced concrete wall of the sluice chamber. Modeling of the actual state of SSS structures is performed, according to the results of calculations, a scheme for strengthening structures of prestressed BCR is proposed and justified.
Conclusions.
As a result of the calculated studies of the deflected stresses, the occurrence of cracks and opening of horizontal and vertical construction joints in the reinforced concrete structure of the sluice chamber wall was confirmed. At the same time, taking into account corrosion of reinforcement at the rear edge of the sluice’s reinforced concrete wall in the areas of horizontal construction joints, stresses in it reach the design resistance of the reinforcement of class A-II. In order to ensure further safe operation of the structures, the scheme of strengthening the structures with prestressed BCR has been proposed and substantiated.
About the Authors
Oleg D. RubinRussian Federation
Evgenii N. Bellendir
Russian Federation
Igor V. Baklykov
Russian Federation
Oksana V. Ziuzina
Russian Federation
Mikhail V. Shaitanov
Russian Federation
References
1. Duic J., Kenno S., Das S. Performance of concrete beams reinforced with basalt fibre composite rebar // Construction and Building Materials. 2018. Vol. 176. Pp. 470-481. DOI: 10.1016/j.conbuildmat.2018.04.208
2. Esfahani M.R., Kianoush M.R., Moradi A.R. Punching shear strength of interior slab-column connections strengthened with carbon fiber reinforced polymer sheets // Engineering Structures. 2009. Vol. 31. Issue 7. Pp. 1535-1542. DOI: 10.1016/j.engstruct.2009.02.021
3. Almassri B., Mahmoud F.A., Francois R. Behaviour of corroded reinforced concrete beams repaired with nsm cfrp rods, experimental and finite element study // Composites Part B: Engineering. 2016. Vol. 92. Pp. 1-25. DOI: 10.1016/j.compositesb.2015.01.022
4. Chellapandian M., Prakash S.S., Sharma A. Experimental and finite element studies on the flexural behavior of reinforced concrete elements strengthened with hybrid FRP technique // Composite Structures. 2019. Vol. 208. Pp. 466-478. DOI: 10.1016/j.compstruct.2018.10.028
5. Hany N.F., Hantouche E.G., Harajli M.H. Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity // Engineering Structures. 2016. Vol. 125. Pp. 1-14. DOI: 10.1016/j.engstruct.2016.06.047
6. Li G., Zhang R., Yang Z., Zhou B. Finite element analysis on mechanical performance of middle long cfst column with inner I-shaped CFRP profile under axial loading // Structures. 2017. Vol. 9. Pp. 63-69. DOI: 10.1016/j.istruc.2016.09.007
7. Al-Saoudi A., Al-Mahaidi R., Kalfat R., Cervenka J. Finite element investigation of the fatigue performance of frp laminates bonded to concrete // Composite Structures. 2019. Vol. 208. Pp. 322-337. DOI: 10.1016/j.compstruct.2018.10.001
8. Рубин О.Д., Лисичкин С.Е., Зюзина О.В. Прочность малоармированных железобетонных конструкций с межблочными строительными швами, усиленных предварительно напряженной базальтокомпозитной арматурой // Природообустройство. 2021. № 1. С. 53-62. DOI: 10.26897/1997-6011-2021-1-53-62
9. Беллендир Е.Н., Рубин О.Д., Лисичкин С.Е., Баклыков И.В. Методика моделирования и расчета железобетонных конструкций эксплуатируемых ГТС, усиленных предварительно напряженной базальтокомпозитной арматурой // Природообустройство. 2021. № 5. С. 59-67. DOI: 10.26897/1997-6011-2021-5-59-67
10. Вапиров Ю.М., Жирнов А.Д., Мищенков Е.Н., Каримова С.А., Панин С.В., Добрянская О.А. и др. Применение расчетных методов определения скорости коррозии для оценки коррозионной агрессивности атмосферы. ВИАМ/2009-205473, 2010.
11. Penttala V. Causes and mechanisms of deterioration in reinforced concrete // Failure, Distress and Repair of Concrete Structures. 2009. Pp. 3-31. DOI: 10.1533/9781845697037.1.3
12. Rodrigues R., Gaboreau S., Gance J., Ignatiadis I., Betelu S. Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring // Construction and Building Materials. 2021. Vol. 269. P. 121240. DOI: 10.1016/j.conbuildmat.2020.121240
13. Chernin L. Effect of corrosion on the concrete-reinforcement interaction in reinforced concrete beams. Haifa, 2008. 184 p.
14. Li Z., Ma J., Ma H., Xu X. Properties and applications of basalt fiber and its composites // IOP Conference Series: Earth and Environmental Science. 2018. Vol. 186. P. 012052. DOI: 10.1088/1755-1315/186/2/012052
15. Hu W.W., Liu H.W., Zhao D.F., Yang Z.B. Applications and advantages of basalt assembly in construction industry // Advanced Materials Research. 2011. Vol. 332-334. Pp. 1937-1940. DOI: 10.4028/www.scientific.net/AMR.332-334.1937
16. Dhand V., Garima M., Rhee K.Y., Park S.-J., Hui D. A short review on basalt fiber reinforced polymer composites // Composites Part B: Engineering. 2015. Vol. 73. Pp. 166-180. DOI: 10.1016/j.compositesb.2014.12.011
17. Pavlović A., Donchev T., Petkova D., Limbachiya M., Almuhaisen R. Pretensioned BFRP reinforced concrete beams: flexural behaviour and estimation of initial prestress losses // MATEC Web of Conferences. 2019. Vol. 289. P. 09001. DOI: 10.1051/matecconf/201928909001
18. Беккер А.Т., Уманский А.М. Применение базальтопластиковой арматуры в конструкциях морских гидротехнических сооружений // Известия Всероссийского научно-исследовательского института гидротехники им. Б.Е. Веденеева. 2016. Т. 282. С. 61-75.
19. Pareek K., Tiwari P., Verma S., Saha P. A review basalt fiber reinforced polymer and composites // 3rd International Conference on Sustainable Energy and Built Environment. 2017.
20. Vinotha Jenifer J., Brindha D. Development of hybrid steel-basalt fiber reinforced concrete - in aspects of flexure, fracture and microstructure // Revista de la construcción. 2021. Vol. 20. Issue 1. Pp. 62-90. DOI: 10.7764/RDLC.20.1.62
Review
For citations:
Rubin O.D., Bellendir E.N., Baklykov I.V., Ziuzina O.V., Shaitanov M.V. Calculation methods for investigating the reinforcement of sluice chamber walls by basalt-composite prestressed reinforcement taking into account relevant data on their operational condition. Construction: Science and Education. 2022;12(3):18-59. (In Russ.) https://doi.org/10.22227/2305-5502.2022.3.2