Preview

Construction: Science and Education

Advanced search

Creation of a network model on the basis of a universal sequence of construction works

https://doi.org/10.22227/2305-5502.2020.3.1

Abstract

Introduction.

Building information modeling is the main direction of development of automated design and control systems. An important component of information modeling is the transfer of data into construction management systems. The most complicated issue is the problem of creating the correct graph topology relevant to the process sequence and construction management experience. The development of automated progress schedule compilation system based on the use of a universal sequence developed earlier is examined.

Materials and methods.

As a result of the analysis of the progress schedule compilation process, the topology creation algorithm is divided into several stages. At the first stage, a text description of the information model is given, which is then converted into a list of building or structure elements. The list of elements should be transformed into the work item list and then supplemented with work items not reflected in the list of elements. This is a separate complex task, which is not examined in this study, and is the direction of further research by the authors. At the next stage, the work items in the list are assigned codes that define the location of the scope of works in time and space.

Results.

An algorithm for converting the work item list into a coherent work schedule, the topology of which takes into account the spatial location of the work area and the sequence of interrelated processes over time, has been developed. The sequence of works is determined by a preliminarily designed universal list. The list of requirements for the information produced by BIM models is developed. Splitting the algorithm into stages allows for manual correction of the work item list and the properties of work items, if necessary.

Conclusions.

The developed method allows for automation of the processes of creating construction plans based on the list of building elements and universal work sequence. At any implementation stage, the work item list may be interactively changed and supplemented. In the future, it is necessary to form a set of parameters for structural elements that will allow automating the choice of technological processes.

About the Authors

Irina V. Karakozova
Moscow State Autonomous Institution Research analytical center (NIAZ); Moscow State University of Civil Engineering (National Research University) (MGSU)
Russian Federation


Alexander S. Pavlov
All-Russian Research Institute for Nuclear Power Plants Operation (VNIIAES)
Russian Federation


References

1. Hartmann T., van Meerveld H., Vossebeld N., Adriaanse A. Aligning building information model tools and construction management methods // Automation in Construction. 2012. Vol. 22. Pp. 605-613. DOI: 10.1016/j.autcon.2011.12.011

2. Belsky M., Sacks R., Brilakis I. Semantic enrichment for building information modeling // Computer-Aided Civil and Infrastructure Engineering. 2015. Vol. 31 (4). Pp. 261-274. DOI: 10.1111/mice.12128

3. Eadie R., Browne M., Odeyinka H., McKeown C., McNiff S. BIM implementation throughout the UK construction project lifecycle: an analysis // Automation in Construction. 2013. Vol. 36. Pp. 145-151. DOI: 10.1016/j.autcon.2013.09.001

4. Soltani S. The contributions of building information modelling to sustainable construction // World Journal of Engineering and Technology. 2016. Vol. 04. Issue 02. Pp. 193-199. DOI: 10.4236/wjet.2016.42018

5. Kivits R.A., Furneaux C. BIM: enabling sustainability and asset management through knowledge management // The Scientific World Journal. 2013. Vol. 2013. Pp. 1-14. DOI: 10.1155/2013/983721

6. Mellado F., Lou E.C.W. Building information modelling, lean and sustainability: An integration framework to promote performance improvements in the construction industry // Sustainable Cities and Society. 2020. Vol. 61. P. 102355. DOI: 10.1016/j.scs.2020.102355

7. Li Y-W., Cao K. Establishment and application of intelligent city building information model based on BP neural network model // Computer Communications. 2020. Vol. 153. Pp. 382-389. DOI: 10.1016/j.comcom.2020.02.013

8. Sacks R., Girolami M., Brilakis I. Building information modelling, artificial intelligence and construction tech // Developments in the Built Environment. 2020. P. 100011. DOI: 10.1016/j.dibe.2020.100011

9. Bettemir Ö.H. Experimental design for genetic algorithm simulated annealing for time cost trade-off problems // International Journal of Engineering & Applied Sciences. 2011. Vol. 3. Issue 1. Pp. 15-26.

10. Гинзбург А.В., Куликова Е.Н., Павлов А.С., Вайнштейн М.С. Обеспечение интероперабельности при проектировании с применением технологий информационного моделирования // Вестник Евразийской науки. 2019. Т. 11. № 6. С. 69. URL: https://esj.today/PDF/25SAVN619.pdf

11. Grilo A., Jardim-Goncalves R. Value proposition on interoperability of BIM and collaborative working Environments // Automation in Construction. 2010. Vol. 19. Issue 5. Pp. 522-530. DOI: 10.1016/j.autcon.2009.11.003

12. Wu J., Zhang J. New automated BIM object classification method to support BIM interoperability // Journal of Computing in Civil Engineering. 2019. Vol. 33. Issue 5. P. 04019033. DOI: 10.1061/(ASCE)CP.1943-5487.0000858

13. Chen Ch., Tang L. BIM-based integrated management workflow design for schedule and cost planning of building fabric maintenance // Automation in Construction. 2019. Vol. 107. P. 102944. DOI: 10.1016/j.autcon.2019.102944

14. Benghi C. Automated verification for collaborative workflows in a digital plan of work // Automation in Construction. 2019. Vol. 107. P. 102926. DOI: 10.1016/j.autcon.2019.102926

15. Каракозова И.В., Малыха Г.Г., Куликова Е.Н., Павлов А.С., Панин А.С. Организационное сопровождение BIM-технологий // Вестник МГСУ. 2019. Т. 14. № 12. С. 1628-1637. DOI: 10.22227/1997-0935.2019.12.1628-1637

16. Каракозова И.В., Малыха Г.Г., Павлов А.С., Панин А.С., Теслер Н.Д. Исследование подготовительных работ для использования BIM-технологий на примере проектирования медицинских организаций // Вестник МГСУ. 2020. Т. 15. № 1. С. 100-111. DOI: 10.22227/1997-0935.2020.1.100-111

17. Тарасенко Д.С. Автоматизация процессов планирования строительного производства промышленных объектов : автореф. дисс. … канд. техн. наук. М. : МАДИ, 2008. 25 с.

18. Эльшейх А.М.Ф.М.А. Информационное моделирование интегрированной автоматизации проектирования и календарного планирования в строительстве : дисс. … канд. техн. наук. М. : МГСУ, 2015. 139 с.

19. Ильягуева М.А., Коридзе Э.З. Автоматизация проектирования топологии сетевых моделей // Вестник ДГТУ. 2009. № 12. С. 22-27.

20. Павлов А.С., Гинзбург А.В., Гусакова Е.А., Каган П.Б. Управление крупномасштабными проектами строительства промышленных объектов: монография. М. : МИСИ-МГСУ, 2019. 188 с.

21. Павлов А.С. Передача информации и распознавание объектов в системах строительного проектирования. М. : Новое тысячелетие, 2003. 269 с.

22. Eastman Ch., Teicholz P., Sacks R., Liston K. BIM handbook: A guide to building information modeling for owners. New Jersey : Wiley, 2018. 681 p.

23. East B. Construction-operation building information exchange (COBie). WBDG, 2016. URL: https://wbdg.org/resources/construction-operationsbuilding-information-exchange-cobie

24. Павлов А.С., Каракозова И.В. Использование ресурсов в строительных организациях. М. : Архитектура-С, 2009. 97 с.


Review

For citations:


Karakozova I.V., Pavlov A.S. Creation of a network model on the basis of a universal sequence of construction works. Construction: Science and Education. 2020;10(3):1-16. (In Russ.) https://doi.org/10.22227/2305-5502.2020.3.1

Views: 163


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)