Preview

Строительство: наука и образование

Расширенный поиск

Моделирование естественного освещения в помещении с решеточным смарт-окном

https://doi.org/10.22227/2305-5502.2024.3.70-88

Аннотация

Введение. Предложен метод моделирования естественного освещения в помещениях с новым типом смарт-окон с решеточным оптическим фильтром. Многочисленные компьютерные программы BPS не имеют соответствующих функций для моделирования в помещениях с решеточными смарт-окнами в силу их отличительных особенностей и новизны. Модифицирован метод расчета автономности непрерывного естественного света (cDA) и на его основе проведено численное моделирование.

Материалы и методы. Представлены методы расчета геометрических параметров решеточного фильтра и временных характеристик светопропускания смарт-окна, разработан метод расчета показателя cDA в помещении со смарт-окном с решетками, расположенными под оптимальным углом, приспособленным к траектории движения Солнца относительно окна.

Результаты. Получены результаты численного моделирования по разработанному методу для окна с тройным остеклением с применением термохромного материала с температурой переключения 25 °С в помещении здания в г. Оренбурге. Для наиболее жаркого периода — в июне, июле и августе показатель cDA рассчитан в окрашенном состоянии термохромного материала фильтра, для остальных месяцев взято его обесцвеченное состояние. Показано преимущество решеточных смарт-окон перед традиционными в виде увеличения освещенности как в окрашенном, так и обесцвеченном состояниях термохромного материала. За счет пропускания большего количества рассеянного света при блокировке прямого света в заранее заданное время решеточные окна обеспечивают более равномерное круглогодичное распределение освещенности по глубине помещения.

Выводы. Решеточные смарт-окна рекомендуется применять на восточных, южных и западных фасадах зданий с режимом работы в дневное время для достижения более комфортных условий естественного освещения на рабочих местах и минимизации энергопотребления и затрат на отопление, вентиляцию, кондиционирование.

Об авторах

Р. С. Закируллин
Оренбургский государственный университет (ОГУ); Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук (НИИСФ РААСН)
Россия

Рустам Сабирович Закируллин — доктор технических наук, доцент, заведующий кафедрой теплогазоснабжения, вентиляции и гидромеханики; главный научный сотрудник

460018, г. Оренбург, пр-т Победы, д. 13;
127238, г. Москва, Локомотивный пр-д, д. 21

РИНЦ AuthorID: 149818, Scopus: 55419487000, ResearcherID: B-5570-2015



И. А. Оденбах
Оренбургский государственный университет (ОГУ); Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук (НИИСФ РААСН)
Россия

Ирина Александровна Оденбах — кандидат педагогических наук, доцент кафедры теплогазоснабжения, вентиляции и гидромеханики; старший научный сотрудник

460018, г. Оренбург, пр-т Победы, д. 13;
127238, г. Москва, Локомотивный пр-д, д. 21

РИНЦ AuthorID: 631027, Scopus: 57211785954, ResearcherID: AAH-4132-2020



В. А. Гирин
Оренбургский государственный университет (ОГУ); Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук (НИИСФ РААСН)
Россия

Владимир Александрович Гирин — старший преподаватель кафедры теплогазоснабжения, вентиляции и гидромеханики; ведущий инженер

460018, г. Оренбург, пр-т Победы, д. 13;
127238, г. Москва, Локомотивный пр-д, д. 21

ResearcherID: GZG-4218-2022



Е. В. Пикалова
Оренбургский государственный университет (ОГУ)
Россия

Евгения Васильевна Пикалова — преподаватель кафедры теплогазоснабжения, вентиляции и гидромеханики

460018, г. Оренбург, пр-т Победы, д. 13

РИНЦ AuthorID: 1169672



Список литературы

1. Mahdavi A. In the matter of simulation and buildings: some critical reflections // Journal of Building Performance Simulation. 2019. Vol. 13. Issue 1. Рр. 26–33. DOI: 10.1080/19401493.2019.1685598

2. Kim Y.S., Shin H.S., Park C.S. Model predictive lighting control for a factory building using a deep deterministic policy gradient // Journal of Building Performance Simulation. 2022. Vol. 15. Issue 2. Рр. 174–193. DOI: 10.1080/19401493.2021.2019310

3. Da Silva P.C., Leal V., Andersen M. Occupants’ behaviour in energy simulation tools: lessons from a field monitoring campaign regarding lighting and shading control // Journal of Building Performance Simulation. 2015. Vol. 8. Issue 5. Рр. 338–358. DOI: 10.1080/19401493.2014.953583

4. Табунщиков Ю.А. Окно как интеллектуальный элемент конструкции здания // Энергосбережение. 2008. № 2. С. 16–21. EDN IJPYSZ.

5. Casini M. Smart buildings: advanced materials and nanotechnology to improve energy-efficiency and environmental performance. Woodhead Publishing, 2016.

6. Rezaei S.D., Shannigrahi S., Ramakrishna S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment // Solar Energy Materials and Solar Cells. 2017. Vol. 159. Рр. 26–51. DOI: 10.1016/j.solmat.2016.08.026

7. Desideri U., Asdrubali F. Handbook of energy efficiency in buildings. 1 Ed. Butterworth-Heinemann, 2018. 858 р.

8. Casini M. Active dynamic windows for buildings : a review // Renewable Energy. 2018. Vol. 119. Рр. 923–934. DOI: 10.1016/j.renene.2017.12.049

9. Kheiri F. A multistage recursive approach in time- and frequency-domain for thermal analysis of thermochromic glazing and thermostatic control systems in buildings // Solar Energy. 2020. Vol. 208. Pр. 814–829. DOI: 10.1016/j.solener.2020.08.019

10. Zhao X., Mofid S.A., Jelle B.P., Tan G., Yin X., Yang R. Optically-switchable thermally-insulating VO2-aerogel hybrid film for window retrofits // Applied Energy. 2020. Vol. 278. P. 115663. DOI: 10.1016/j.apenergy.2020.115663

11. Kong M., Egbo K., Liu C.P., Hossain M.K., Tso C.Y., Chao C.Y.H. et al. Rapid thermal annealing assisted facile solution method for tungsten-doped vanadium dioxide thin films on glass substrate // Journal of Alloys and Compounds. 2020. Vol. 833. P. 155053. DOI: 10.1016/j.jallcom.2020.155053

12. Seeboth A., Ruhmann R., Mühling O. Thermotropic and thermochromic polymer based materials for adaptive solar control // Materials. 2010. Vol. 3. Issue 12. Pр. 5143–5168. DOI: 10.3390/ma3125143

13. Ogawa S., Ono Y., Takahashi I. Glass transition behavior of perpendicularly aligned thermotropic liquid crystalline phases consisting of long-chain trehalose lipids // Journal of Molecular Liquids. 2020. Vol. 298. P. 111954. DOI: 10.1016/j.molliq.2019.111954

14. Szukalski A., Korbut A., Ortyl E. Structural and light driven molecular engineering in photochromic polymers // Polymer. 2020. Vol. 192. P. 122311. DOI: 10.1016/j.polymer.2020.122311

15. Colombi G., Cornelius S., Longo A., Dam B. Structure model for anion-disordered photochromic Gadolinium Oxyhydride thin films // The Journal of Physical Chemistry C. 2020. Vol. 124. Issue 25. Рр. 13541–13549. DOI: 10.1021/acs.jpcc.0c02410

16. Liu J., Lu Y., Li J., Lu W. UV and X-ray dual photochromic properties of three CP. based on a new viologen ligand // Dyes and Pigments. 2020. Vol. 177. P. 108276. DOI: 10.1016/j.dyepig.2020.108276

17. Chen P.W., Chang C.T., Ko T.F., Hsu S.C., Li K.D., Wu J.Y. Fast response of complementary electrochromic device based on WO3/NiO electrodes // Scientific Reports. 2020. Vol. 10. Issue 1. DOI: 10.1038/s41598-020-65191-x

18. Li W., Zhang X., Chen X., Zhao Y., Wang L., Chen M. et al. Lithiation of WO3 films by evaporation method for all-solid-state electrochromic devices // Electrochimica Acta. 2020. Vol. 355. P. 136817. DOI: 10.1016/j.electacta.2020.136817

19. Zhang W., Chen X., Wang X., Zhu S., Wang S., Wang Q. Pulsed electrodeposition of nanostructured polythiothene film for high-performance electrochromic devices // Solar Energy Materials and Solar Cells. 2021. Vol. 219. P. 110775. DOI: 10.1016/j.solmat.2020.110775

20. Ismail A.H., Yahya N.A.M., Mahdi M.A., Yaacob M.H., Sulaiman Y. Gasochromic response of optical sensing platform integrated with polyaniline and poly(3,4-ethylenedioxythiophene) exposed to NH3 gas // Polymer. 2020. Vol. 192. P. 122313. DOI: 10.1016/j.polymer.2020.122313

21. Hu C.-W., Nishizawa K., Okada M., Yamada Y., Watanabe H., Tajima K. Roll-to-roll production of Prussian blue/P. nanocomposite films for flexible gasochromic applications // Inorganica Chimica Acta. 2020. Vol. 505. P. 119466. DOI: 10.1016/j.ica.2020.119466

22. Соловьёв А.К. Современные подходы к нормированию естественного освещения жилых зданий. Результаты исследований // Светотехника. 2020. № 4. С. 5–10. EDN RWIEAU.

23. Патент RU № 2509324. Способ регулирования направленного светопропускания / Р.С. Закируллин; заявл. № 2012130148/28 от 05.11.2010; опубл. 03.10.2014. Бюл. № 7. 3 с.

24. Патент RU № 2677069. Способ углового регулирования направленного светопропускания окна / Р.С. Закируллин; заявл. № 2017144699 от 12.07.2017; опубл. 15.01.2019. Бюл. № 2. 2 с.

25. Zakirullin R.S. Optimized angular selective filtering of direct solar radiation // Journal of the Optical Society of America A. 2018. Vol. 35. Issue 9. P. 1592. DOI: 10.1364/JOSAA.35.001592

26. Zakirullin R.S. A smart window for angular selective filtering of direct solar radiation // Journal of Solar Energy Engineering. 2020. Vol. 142. Issue 1. DOI: 10.1115/1.4044059

27. Zakirullin R.S. Chromogenic materials in smart windows for angular-selective filtering of solar radiation // Materials Today Energy. 2020. Vol. 17. P. 100476. DOI: 10.1016/j.mtener.2020.100476

28. Закируллин Р.С., Оденбах И.А. Динамический контроль естественного освещения с помощью смарт-окна с решеточным оптическим фильтром // Светотехника. 2021. № 3. С. 47–51. EDN SLEWEW.

29. Закируллин Р.С., Оденбах И.А. Оптимизация естественного освещения и инсоляции зданий с криволинейными фасадами // Academia. Архитектура и строительство. 2021. № 2. С. 111–116. DOI: 10.22337/2077-9038-2021-2-111-116. EDN KFAAUZ.

30. Zakirullin R.S. Typology of buildings with grating smart windows with azimuthally optimized light transmission // Journal of Architectural Engineering. 2022. Vol. 28. Issue 4. DOI: 10.1061/(ASCE)AE.1943-5568.0000566

31. Reinhart C.F., Mardaljevic J., Rogers Z. Dyna-mic Daylight Performance Metrics for Sustainable Buil-ding Design // LEUKOS. 2006. Vol. 3. Issue 1. Рр. 7–31. DOI: 10.1582/LEUKOS.2006.03.01.001

32. Hopkinson R.G., Longmore J., Petherbridge P. An Empirical formula for the computation of the indirect component of daylight factor // Transactions of the Illu-minating Engineering Society. 1954. Vol. 19. Issue 7. Рр. 201–219. DOI: 10.1177/147715355401900701

33. Michael P.R., Johnston D.E., Moreno W. A conversion guide: solar irradiance and lux illuminance // Journal of Measurements in Engineering. 2020. Vol. 8. Issue 4. Рр. 153–166. DOI: 10.21595/jme.2020.21667


Рецензия

Для цитирования:


Закируллин Р.С., Оденбах И.А., Гирин В.А., Пикалова Е.В. Моделирование естественного освещения в помещении с решеточным смарт-окном. Строительство: наука и образование. 2024;14(3):70-88. https://doi.org/10.22227/2305-5502.2024.3.70-88

For citation:


Zakirullin R.S., Odenbaкh I.A., Girin V.A., Pikalova E.V. Modelling natural light in a room with a lattice smart window. Construction: Science and Education. 2024;14(3):70-88. (In Russ.) https://doi.org/10.22227/2305-5502.2024.3.70-88

Просмотров: 125


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2305-5502 (Online)