Recent development of advanced monitoring technologies in geotechnical engineering
https://doi.org/10.22227/2305-5502.2025.1.16
Abstract
Introduction. The increasing demand for green and intelligent civil infrastructures necessitates high-precision Internet of Things (IoT) monitoring systems. Given the high sensitivity of geotechnical engineering to soil strains, it is essential to develop precise measurement approaches that can accurately capture soil strains ranging from micro-strain to large strains. In recent years, advancements in fibre optic sensing technology have enabled accurate measurements within geotechnical engineering. However, there is still a need to enhance measurement approaches for fibre optic sensing technologies across various strain levels. This study investigates several fibre optic sensing technologies, including point-distributed, array sensing, and distributed fibre optic sensors, and provides a comprehensive review of recent advancements in fibre optic sensing for the field of geotechnical engineering.
Materials and methods. Innovative methods and devices for high-precision small-strain fibre optic sensing are detailed. Additionally, a novel integrated fibre optic sensor device capable of measuring water pressure and total soil pressure using a signal transducer is introduced.
Results. The study also explores the use of 3D printing technology in fabricating these transducers. A fibre optic sensing method for monitoring cracks is presented, encompassing physical fabrication, calibration tests, and field engineering application verification.
Conclusions. The fibre optic sensing methods proposed in this study offer effective solutions for accurate measurement in geotechnical engineering across different environmental and disaster conditions.
About the Authors
Dong-Sheng XuChina
Dong-Sheng Xu — PhD, Professor, Vice Dean of School of Civil Engineering and Architecture
Luoshi Road, Wuhan, Hubei, 430070
Yi-Ding Liu
China
Yi-Ding Liu
Luoshi Road, Wuhan, Hubei, 430070
A. Zhussupbekov
Kazakhstan
Askar Zhussupbekov
010008, Astana
Yue Qin
China
Yue Qin
Luoshi Road, Wuhan, Hubei, 430070
G. Zhairbayeva
Kazakhstan
Gulnaz Zhairbayeva — PhD, student, Department of Civil Engineering
010008, Astana
References
1. Wu T.G., Liu G.W., Fu S.G., Xing F. Recent Progress of Fibre-Optic Sensors for the Structural Health Monitoring of Civil Infrastructure. Sensors. 2020; 20(16):4505-4525.
2. Soman R., Wee J., Peters K. Optical Fibre Sensors for Ultrasonic Structural Health Monitoring : а Review. Sensors. 2021; 21(21):6571-6592.
3. Chen S.M., Wang J.H., Zhang C., Li M.Q., Li N., Wu H.J. et al. Marine Structural Health Monitoring with Optical Fibre Sensors : а Review. Sensors. 2023; 23(4):1085-1105.
4. Wild G., Hinckley S. Distributed Optical Fibre Smart Sensors for Structural Health Monitoring. Structural Health Monitoring 2011: Condition-Based Maintenance and Intelligent Structures. 2013; 2:2050-2057.
5. Xu D.S., Zhao Y.M., Liu H.B., Zhu H.H. Deformation Monitoring of Metro Tunnel with a New Ultrasonic-Based System. Sensors. 2017; 17(8):1739-1753.
6. Xu D.S., Zhu F.B., Lalit B., Fan X.C., Liu Q.B. Construction Solid Waste Landfills: Risk Assessment and Monitoring by Fibre Optic Sensing Technique. Geomatics Natural Hazards & Risk. 2021; 12(1):63-83.
7. Tian H.M., Li D.Q., Cao Z.J., Xu D.S., Fu X.Y. Reliability-Based Monitoring Sensitivity Analysis for Reinforced Slopes Using BUS and Subset Simulation Methods. Engineering Geology. 2021; 293:105792-105792.
8. Xu Z.D., Liu M., Li A.Q., Yuan F., Li Z. Application of Fibre Optic Sensors for Health Monitoring of Civil Engineering. Proceedings of International Conference on Health Monitoring of Structure, Materials and Environment. 2007; 464-471.
9. Kirkendall C.K., Dandridge A. Overview of High Performance Fibre-Optic Sensing. Journal Of Physics D-Applied Physics. 2004; 37(18):R197-R216.
10. Kumari C.R.U., Samiappan D., Kumar R., Sudhakar T. Fibre Optic Sensors in Ocean Observation : a Comprehensive Review. Optik. 2019; 179:351-360.
11. Li T.L., Wu D.J., Khyam M.O., Wu D.J., Guo J.X., Tan Y.G. et al. Recent Advances and Tendencies Regarding Fibre Optic Sensors for Deformation Measurement : а Review. IEEE Sensors Journal. 2022; 22(4):2962-2973.
12. Hsiao T.C., Hsieh T.S., Chen Y.C., Huang S.C., Chiang C.C. Metal-Coated Fibre Bragg Grating for Dynamic Temperature Sensor. Optik. 2016; 127(22):10740-10745.
13. Liu Y.C., Fang J., Jia D.Y., Li W.L. Temperature Characteristics of FBG Sensors with Different Coatings for High Temperature Superconductor Application. Proceedings of 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC). 2019; 1546-1550.
14. Li Q., Liu Y.M., Hong C.Y., Xiong L., Guo Y.X. A Comparative Investigation on Performance of Fibre Bragg Grating Soil Pressure Sensors With Different Configurations. IEEE Sensors Journal. 2023; 23(22):27397-27405.
15. Yang J., Zhao Y., Peng B.J., Wan X. Temperature-Compensated High Pressure FBG Sensor with a Bulk-Modulus and Self-Demodulation Method. Sensors And Actuators A-Physical. 2005; 118(2):254-258.
16. Shi Y., Wang C.X., Cai J.X., Gao Z.T., Zhang Y.Z. FBG Displacement Sensor with Hyperbolic Flexible Hinge Structure. Measurement Science and Technology. 2023; 34(12).
17. Ng J.H., Zhou X.Q., Yang X.F., Hao J.Z. A Simple Temperature-Insensitive Fibre Bragg Grating Displacement Sensor. Optics Communications. 2007; 273(2):398-401.
18. Gao L., Wang X. Acta Materiae Compositae Sinica. 2016; 33(11):2485-2492.
19. Kesavan K., Ravisankar K., Parivallal S., Sreeshylam P., Sridhar S. Experimental Studies on Fibre Optic Sensors Embedded in Concrete. Measurement. 2010; 43(2):157-163.
20. Fajkus M., Nedoma J., Mec P., Jargus J., Svobodova L., Skapa J. FBG Strain Sensor Mounted on Plastic Carrier. Fibre Optic Sensors and Applications XV. 2018.
21. Xu D.S., Su Z.Q., Lalit B., Qin Y. A Hybrid FBG-Based Load and Vibration Transducer with a 3D Fused Deposition Modelling Approach. Measurement Science and Technology. 2022; 33(6).
22. Bas J., Dutta T., Llamas Garro I., Velázquez-González J.S., Dubey R., Mishra S.K. Embedded Sensors with 3D Printing Technology : а Review. Sensors. 2024; 24(6).
23. Ahn S.H., Baek C., Lee S., Ahn I.S. Anisotropic Tensile Failure Model of Rapid Prototyping Parts — Fused Deposition Modeling (FDM). International Journal of Modern Physics B. 2003; 17(8-9):1510-1516.
24. Hong C.Y., Yuan Y., Yang Y.Y., Zhang Y.F., Abro Z.A. A Simple FBG Pressure Sensor Fabricated Using Fused Deposition Modelling Process. Sensors and Actuators A-Physical. 2019; 285:269-274.
25. Hassan M.S., Zaman S., Dantzler J.Z.R., Leyva D.H., Mahmud M.S., Ramirez J.M. 3D Printed Integrated Sensors: From Fabrication to Applications : а Review. Nanomaterials. 2023; 13(24).
26. Feng F., Qin L. Research Progress of Distributed and Quasi Distributed Optical Fibre Sensors. Optical Communication Technology. 2021; 45(3):10-16.
27. Kuang Y., Wu H., Zhang J. et al. Advances of Key Technologies on Distributed Fibre System for Multi-Parameter Sensing. Opto-Electronic Engineering. 2018; 45(9):170678-170678.
28. Quinn M.C., Baxter C.D.P., Winters K.E., Picucci J.R. Geotechnical Effects on Fibre Optic Distributed Acoustic Sensing Performance. Geo-Congress 2022: Advances in Monitoring and Sensing; Embankments, Slopes, and Dams; Pavements; and Geo-Education. 2022; 53-62.
29. Li C., Tang J., Cheng C., Cai L., Yang M. FBG Arrays for Quasi-Distributed Sensing : a Review. Photonic Sensors. 2021; 11(1):91-108.
30. Du Y., Si J., Chen T., Li S., Cui W., Li C. et al. Quasi-Distributed High Temperature Sensor Based on Fibre Bragg Grating. Laser & Optoelectronics Progress. 2016; 53(10):100606-100606.
31. Pei H., Cui P., Yin J., Zhu H., Chen X., Pei L. Monitoring and Warning of Landslides and Debris Flows Using Optical Fibre Sensor Technology. Journal of Mountain Science. 2011; 8(5):728-738.
32. Xu D.S., Dong L.J., Borana L., Liu H.B. Early-Warning System with Quasi-Distributed Fibre Optic Sensor Networks and Cloud Computing for Soil Slopes. IEEE Access. 2017; 5:25437-25444.
33. Luo Z.H., Zhang Y., Cheng W.S., Yang X.B., Zeng S.G. Fibre-End Antireflection Method for Ultra-Weak Fibre Bragg Grating Sensing Systems. Measurement Science and Technology. 2021; 32(5):055501.
34. Wang J., Hu D., Wang D.Y., Wang A.B. Fully-Distributed Fibre-Optic High-Temperature Sensing Based on Stimulated Brillouin Scattering. Fibre Optic Sensors and Applications X. 2013; 87150Q-87150Q.
35. Ahmad E.J., Wang C., Feng D.J., Yan Z.J., Zhang L. Ultrafast Interrogation of Fully Distributed Chirped Fibre Bragg Grating Strain Sensor. 2016 IEEE Photonics Conference (IPC). 2016; 482-483.
36. Wang C.J., Li Z.Y., Gui X., Fu X.L., Wang F., Wang H.H. et al. Micro-Cavity Array with High Accuracy for Fully Distributed Optical Fibre Sensing. Journal of Lightwave Technology. 2019; 37(3):927-932.
37. Li J.Z., Shen B.H., Wang J.J. A Combined Positioning Method Used for Identification of Concrete Cracks. Micromachines. 2021; 12(12):1388.
38. Wang L., Zhou B., Shu C., He S.L. Distributed Temperature Sensing Using Stimulated-Brillouin-Scattering-Based Slow Light. IEEE Photonics Journal. 2013; 5(6):16011.
39. Ravet F., Briffod F., Goy A., Rochat E. Mitigation of Geohazard Risk Along Transportation Infrastructures with Optical Fibre Distributed Sensing. Journal of Civil Structural Health Monitoring. 2021; 11(4):967-988.
40. Chaube P., Colpitts B.G., Jagannathan D., Brown A.W. Distributed Fibre-Optic Sensor for Dynamic Strain Measurement. IEEE Sensors Journal. 2008; 8(7-8):1067-1072.
Review
For citations:
Xu D., Liu Y., Zhussupbekov A., Qin Yu., Zhairbayeva G. Recent development of advanced monitoring technologies in geotechnical engineering. Construction: Science and Education. 2025;15(1):152-161. (In Russ.) https://doi.org/10.22227/2305-5502.2025.1.16