Исследование рабочих характеристик мембранных модулей для очистки сточных вод
https://doi.org/10.22227/2305-5502.2020.1.6
Аннотация
Введение.
Рассмотрена работа отдельно расположенного мембранного биореактора, который может быть использован в качестве альтернативы широко применяемым в настоящее время погружным мембранным модулям для станций малой производительности.
Материалы и методы.
Исследования проведены в лабораторных условиях с применением ультрафильтрационного мембранного элемента. В качестве исследуемой жидкости использована синтетическая сточная вода, которая по своему составу соответствовала городским сточным водам, с различными концентрациями взвешенных веществ (доза ила). В экспериментах использован мембранный элемент производства компании Raifil (Корея) с капиллярными ультрафильтрационными мембранами. Размер пор мембран - 0,1 мкм. Общая площадь фильтрующей поверхности мембран - 1 м2. Данный мембранный модуль обладает стандартными характеристика (размер пор, материал) для ультрафильтрационных мембран, поэтому можно предположить, что полученные в дальнейшем результаты не будут иметь существенных отличий в случае использования ультрафильтрационных мембранных модулей других производителей.
Результаты.
Описана разработанная методика оптимизации величин рабочего давления и доз ила, при которых ведется процесс мембранной очистки. Получены значения операционного давления, при котором резко возрастает количество взвешенных веществ в фильтрате, т.е. начинается проскок взвешенных веществ в фильтрате или проскок загрязнений. Определены параметры работы установки, при которых возможно добиться наибольшей производительности.
Выводы.
Полученные результаты позволяют наметить дальнейшие направления исследования по оптимизации работы мембранных биореакторов (как отдельно стоящих, так и погружных) для нужд очистки сточных вод.
Об авторе
Н. А. МакишаРоссия
Список литературы
1. Sathya U., Nithya K.M., Balasubramanian N. Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment // Journal of Environmental Management. 2019. Vol. 246. Pp. 768-775. DOI: 10.1016/j.jenvman.2019.06.039
2. Wang H., Xu G., Qiu Z., Zhou Y., Liu Y. NOB suppression in pilot-scale mainstream nitritation-denitritation system coupled with MBR for municipal wastewater treatment // Chemosphere. 2019. Vol. 216. Pp. 633-639 DOI: 10.1016/j.chemosphere. 2018.10.187
3. Степанов С.В., Сташок Ю.Е., Габидуллина Л.А. Модульные мембранные биореакторы // Водоочистка. Водоподготовка. Водоснабжение. 2017. № 2 (110). С. 40-42.
4. Li T., Zhang L., Ai W., Dong W., Yu Q. A modified MBR system with post advanced purification for domestic water supply system in 180-day CELSS: Construction, pollutant removal and water allocation // Journal of Environmental Management. 2018. Vol. 222. Pp. 37-43 DOI: 10.1016/j.jenvman.2018.05.023
5. Nawaz M.S., Parveen F., Khan S.J., Hankins N.P. Impact of osmotic backwashing, particle size distribution and feed-side cross-flow velocity on flux in the forward osmosis membrane bioreactor (FO-MBR) // Journal of Water Process Engineering. 2019. Vol. 31. P. 100861. DOI: 10.1016/j.jwpe.2019.100861
6. Gündoğdu M., Jarma Y.A., Kabay N., Pek T.Ö., Yüksel M. Integration of MBR with NF/RO processes for industrial wastewater reclamation and water reuse-effect of membrane type on product water quality // Journal of Water Process Engineering. 2019. Vol. 29. P. 100574. DOI: 10.1016/j.jwpe.2018.02.009
7. Barreto C.M., Garcia H.A., Hooijmans C.M., Herrera A., Brdjanovic D. Assessing the performance of an MBR operated at high biomass concentrations // International Biodeterioration & Biodegradation. 2017. Vol. 119. Pp. 528-537. DOI: 10.1016/j.ibiod.2016.10.006
8. Krzeminski P., Leverette L., Malamis S., Katsou E. Membrane bioreactors - A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects // Journal of Membrane Science. 2017. Vol. 527. Pp. 207-227. DOI: 10.1016/j.memsci.2016.12.010
9. Gkotsis P.K., Batsari E.L., Peleka E.N., Tolkou A.K., Zouboulis A.I. Fouling control in a lab-scale MBR system: Comparison of several commercially applied coagulants // Journal of Environmental Management. 2017. Vol. 203. Issue 2. Pp. 838-846. DOI: 10.1016/j.jenvman.2016.03.003
10. Ng A.N.L., Kim A.S. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters // Desalination. 2007. Vol. 212. Issue 1-3. Pp. 261-281. DOI: 10.1016/j.desal.2006.10.013
11. Gander M., Jefferson B., Judd S. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations // Separation and Purification Technology. 2000. Vol. 18. Issue 2. Pp. 119-130. DOI: 10.1016/S1383-5866(99)00056-8
12. Krzeminski P., Langhorst W., Schyns P., de Vente D., van Lier J.B. The optimal MBR configuration: Hybrid versus stand-alone - Comparison between three full-scale MBRs treating municipal wastewater // Desalination. 2012. Vol. 284. Pp. 341-348. DOI: 10.1016/j.desal.2011.10.038
13. Yeon K.-M., Park J.-S., Lee C.-H., Kim S.-M. Membrane coupled high-performance compact reactor: A new MBR system for advanced wastewater treatment // Water Research. 2005. Vol. 39. Issue 10. Pp. 1954-1961. DOI: 10.1016/j.watres.2005.03.006
14. Gil J.A., Krzeminski P., van Lier J.B., van der Graaf J.H.J.M., Wijffels T., Prats D. Analysis of the filterability in industrial MBRs. Influence of activated sludge parameters and constituents on filterability // Journal of Membrane Science. 2011. Vol. 385-386. Pp. 96-109. DOI: 10.1016/j.memsci.2011.09.030
15. Krzeminski P., Iglesias-Obelleiro A., Madebo G., Garrido J.M., van der Graaf J.H.J.M., van Lier J.B. Impact of temperature on raw wastewater composition and activated sludge filterability in full-scale MBR systems for municipal sewage treatment // Journal of Membrane Science. 2012. Vol. 423-424. Pp. 348-361. DOI: 10.1016/j.memsci.2012.08.032
16. Robles A., Ruano M.V., Ribes J., Ferrer J. Advanced control system for optimal filtration in submerged anaerobic MBRs (SAnMBRs) // Journal of Membrane Science. 2013. Vol. 430. Pp. 330-341. DOI: 10.1016/j.memsci.2012.11.078
17. Нибусина В.И. Определение критического потока методом «FLUX-STEP» в погружном мембранном биореакторе // Современные научные исследования и инновации. 2016. № 11 (67). С. 202-215.
Рецензия
Для цитирования:
Макиша Н.А. Исследование рабочих характеристик мембранных модулей для очистки сточных вод. Строительство: наука и образование. 2020;10(1):6. https://doi.org/10.22227/2305-5502.2020.1.6
For citation:
Makisha N.A. Research of performance characteristics of membrane modules for wastewater treatment. Construction: Science and Education. 2020;10(1):6. (In Russ.) https://doi.org/10.22227/2305-5502.2020.1.6