Research of performance characteristics of membrane modules for wastewater treatment
https://doi.org/10.22227/2305-5502.2020.1.6
Abstract
Introduction.
The study focuses on the operation of a standalone membrane bioreactor applicable as an alternative to submerged membrane modules widely used as part of small capacity wastewater treatment facilities.
Materials and methods.
An ultra-filtration membrane was used to perform the research in a laboratory environment. The liquid, exposed to research, represented synthetic wastewater, whose composition was similar to the one of urban wastewaters, and it had varied concentrations of suspended solids (MLSS). The membrane element, produced by Raifil (Republic of Korea), that has capillary ultra-filtration membranes, was used in the experiments. The membrane pore size is 1 micron. The total membrane filter area is one square meter. This membrane module has standard characteristics (pore size, material), typical for ultra-filtration membranes; therefore, we can assume that any further results will not demonstrate any substantial discrepancies, if ultra-filtration membranes made by other manufacturers are used to conduct experiments.
Results.
The author describes a methodology for the optimization of pressure and MLSS values used in the process of membrane treatment. The author obtained the pressure values at which the amount of suspended solids in the filtered material shows a sharp rise, which means a slip of suspended solids into the filtrate, or a slip of contaminants. The author also identified the operating parameters that ensure maximal capacity.
Conclusions.
These findings help to outline a roadmap for further research into the optimization of membrane bioreactors (both standalone and submerged units) used in wastewater treatment.
About the Author
Nikolay A. MakishaRussian Federation
References
1. Sathya U., Nithya K.M., Balasubramanian N. Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment // Journal of Environmental Management. 2019. Vol. 246. Pp. 768-775. DOI: 10.1016/j.jenvman.2019.06.039
2. Wang H., Xu G., Qiu Z., Zhou Y., Liu Y. NOB suppression in pilot-scale mainstream nitritation-denitritation system coupled with MBR for municipal wastewater treatment // Chemosphere. 2019. Vol. 216. Pp. 633-639 DOI: 10.1016/j.chemosphere. 2018.10.187
3. Степанов С.В., Сташок Ю.Е., Габидуллина Л.А. Модульные мембранные биореакторы // Водоочистка. Водоподготовка. Водоснабжение. 2017. № 2 (110). С. 40-42.
4. Li T., Zhang L., Ai W., Dong W., Yu Q. A modified MBR system with post advanced purification for domestic water supply system in 180-day CELSS: Construction, pollutant removal and water allocation // Journal of Environmental Management. 2018. Vol. 222. Pp. 37-43 DOI: 10.1016/j.jenvman.2018.05.023
5. Nawaz M.S., Parveen F., Khan S.J., Hankins N.P. Impact of osmotic backwashing, particle size distribution and feed-side cross-flow velocity on flux in the forward osmosis membrane bioreactor (FO-MBR) // Journal of Water Process Engineering. 2019. Vol. 31. P. 100861. DOI: 10.1016/j.jwpe.2019.100861
6. Gündoğdu M., Jarma Y.A., Kabay N., Pek T.Ö., Yüksel M. Integration of MBR with NF/RO processes for industrial wastewater reclamation and water reuse-effect of membrane type on product water quality // Journal of Water Process Engineering. 2019. Vol. 29. P. 100574. DOI: 10.1016/j.jwpe.2018.02.009
7. Barreto C.M., Garcia H.A., Hooijmans C.M., Herrera A., Brdjanovic D. Assessing the performance of an MBR operated at high biomass concentrations // International Biodeterioration & Biodegradation. 2017. Vol. 119. Pp. 528-537. DOI: 10.1016/j.ibiod.2016.10.006
8. Krzeminski P., Leverette L., Malamis S., Katsou E. Membrane bioreactors - A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects // Journal of Membrane Science. 2017. Vol. 527. Pp. 207-227. DOI: 10.1016/j.memsci.2016.12.010
9. Gkotsis P.K., Batsari E.L., Peleka E.N., Tolkou A.K., Zouboulis A.I. Fouling control in a lab-scale MBR system: Comparison of several commercially applied coagulants // Journal of Environmental Management. 2017. Vol. 203. Issue 2. Pp. 838-846. DOI: 10.1016/j.jenvman.2016.03.003
10. Ng A.N.L., Kim A.S. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters // Desalination. 2007. Vol. 212. Issue 1-3. Pp. 261-281. DOI: 10.1016/j.desal.2006.10.013
11. Gander M., Jefferson B., Judd S. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations // Separation and Purification Technology. 2000. Vol. 18. Issue 2. Pp. 119-130. DOI: 10.1016/S1383-5866(99)00056-8
12. Krzeminski P., Langhorst W., Schyns P., de Vente D., van Lier J.B. The optimal MBR configuration: Hybrid versus stand-alone - Comparison between three full-scale MBRs treating municipal wastewater // Desalination. 2012. Vol. 284. Pp. 341-348. DOI: 10.1016/j.desal.2011.10.038
13. Yeon K.-M., Park J.-S., Lee C.-H., Kim S.-M. Membrane coupled high-performance compact reactor: A new MBR system for advanced wastewater treatment // Water Research. 2005. Vol. 39. Issue 10. Pp. 1954-1961. DOI: 10.1016/j.watres.2005.03.006
14. Gil J.A., Krzeminski P., van Lier J.B., van der Graaf J.H.J.M., Wijffels T., Prats D. Analysis of the filterability in industrial MBRs. Influence of activated sludge parameters and constituents on filterability // Journal of Membrane Science. 2011. Vol. 385-386. Pp. 96-109. DOI: 10.1016/j.memsci.2011.09.030
15. Krzeminski P., Iglesias-Obelleiro A., Madebo G., Garrido J.M., van der Graaf J.H.J.M., van Lier J.B. Impact of temperature on raw wastewater composition and activated sludge filterability in full-scale MBR systems for municipal sewage treatment // Journal of Membrane Science. 2012. Vol. 423-424. Pp. 348-361. DOI: 10.1016/j.memsci.2012.08.032
16. Robles A., Ruano M.V., Ribes J., Ferrer J. Advanced control system for optimal filtration in submerged anaerobic MBRs (SAnMBRs) // Journal of Membrane Science. 2013. Vol. 430. Pp. 330-341. DOI: 10.1016/j.memsci.2012.11.078
17. Нибусина В.И. Определение критического потока методом «FLUX-STEP» в погружном мембранном биореакторе // Современные научные исследования и инновации. 2016. № 11 (67). С. 202-215.
Review
For citations:
Makisha N.A. Research of performance characteristics of membrane modules for wastewater treatment. Construction: Science and Education. 2020;10(1):6. (In Russ.) https://doi.org/10.22227/2305-5502.2020.1.6