Aeration of buildings on difficult terrains
https://doi.org/10.22227/2305-5502.2022.2.2
Abstract
Introduction.
It is necessary to learn the wind speed distribution and its impact on facades to study the aeration characteristics of a built-up area. An important task is to assess an increase in the heat loss from a building. In addition, the building itself, its shape and location have a significant impact on the nature of the air flow. The wind speed and direction change near a building; there is strong eddying around it, depending on the shape in plan and the volumetric-spatial solution. A built-up area, accommodating different layouts of buildings, also affects the nature of the air flow.
Materials and methods.
Methods of theoretical, field studies of the aeration of buildings were adopted to identify the influence of different terrains on the nature of air flows. Domestic and foreign methods of scientific research have been analyzed. The methodology that allows predicting the aeration pattern in curtilages has been developed.
Results.
Approaches to the problem of improving the environment in terms of studying methods of aerodynamic calculations, used in structural aerodynamics, are considered. The purposeful statement of theoretical and experimental researches, focused on developing an effective method for the calculation of natural aeration of buildings is outlined. The intensity of air exchange between indoor and outdoor environments under the wind pressure, wind loads on buildings, aeration of premises, heat losses from infiltration, or air leakage through enclosing structures were identified. The designed model, simulating the formation of a circulation zone for various dimensions of buildings, wind flow velocities, and slope steepness values allows projecting the aeration in curtilages.
Conclusions.
The proposed calculation method can be used to project the aeration in curtilages and identify windless regions on the windward side of a building; it is also possible to identify the amount of air flowing in and out through the opposite windward and windward openings in the walls of buildings when they are located in the windward side of a mountain, the aeration of rooms, wind loads on buildings, and heat losses from infiltration.
Keywords
About the Author
Dmitry A. KimRussian Federation
References
1. Умнякова Н. П. Развитие теории расчета и проектирования ограждающих конструкций с учетом специфики внешних воздействий и отражательных свойств материалов : дис. … д-ра техн. наук. Курск, 2019. 341 с.
2. Гагарин В. Г., Козлов В. В. О комплексном показателе тепловой защиты оболочки здания // АВОК: вентиляция, отопление, кондиционирование воздуха, теплоснабжение и строительная теплофизика. 2010. № 4. С. 52-61.
3. Табунщиков Ю. А., Бродач М. М., Шилкин Н. В. Энергоэффективные здания. М. : АВОК-пресс, 2003. 192 с.
4. Гиясов А. Тепло-ветровой режим городского каньона, взаимосвязь его с воздушной средой помещений // Инженерный вестник Дона. 2018. № 1 (48). 144 с.
5. Гиясов Б. И. Роль солнечной радиации в формировании тепло-ветрового режима междомового пространства // Вестник МГСУ. 2012. № 3. С. 12-15.
6. Blázquez T., Suárez R., Sendra J. J. Protocol for assessing energy performance to improve comfort conditions in social housing in a Spanish southern city // International Journal of Energy Production and Management. 2017. Vol. 2. Issue 2. Pp. 140-152. DOI: 10.2495/eq-v2-n2-140-152
7. Cheng Y., Niu J., Gao N. Thermal comfort models: A review and numerical investigation // Building and Environment. 2012. Vol. 47. Pp. 13-22. DOI: 10.1016/j.buildenv.2011.05.011
8. Giyasov A. Regulation of the microecological environment of residential buildings in southern cities with a hot-calm climate condition // MATEC Web of Conferences. 2018. Vol. 193. P. 03036. DOI: 10.1051/matecconf/201819303036
9. Kensek K., Hansanuwat R. Environment control systems for sustainable design: a methodology for testing, simulating and comparing kinetic facade systems // Journal of Creative Sustainable Architecture & Built Environment, CSABE. 2011. Vol. 1. Pp. 27-45.
10. Bacha C. B., Bourbia F. Effect of kinetic facades on energy efficiency in office buildings - hot dry climates // 11th Conference on Advanced Building Skins. Bern, Switzerland, 2016. Pp. 458-468.
11. Горниак Ю. Г. Применение фасадных систем в жилищно-гражданском строительстве // Энергоснабжение. 2003. № 4. С. 28-30.
12. Стецкий С. В., Ходейр В. А. Эффективные солнцезащитные устройства в гражданском строительстве регионов с жарким солнечным климатом // Вестник МГСУ. 2012. № 7. С. 9-15. DOI: 10.22227/1997-0935.2012.7.9-15
13. Горомосов М. С. Микроклимат жилищ и его гигиеническое нормирование. М. : Медгиз, 1963. 134 с.
14. Giyasov A. The role of the solar irradiation plate for estimation of the insolation regime of urban territories and buildings // Light & Engineering. 2019. Pp. 111-116. DOI: 10.33383/2018-032
15. Rizk A. A., Henze G. P. Improved airflow around multiple rows of buildings in hot arid climates // Energy and Buildings. 2010. Vol. 42. Issue 10. Pp. 1711-1718. DOI: 10.1016/j.enbuild.2010.05.005
16. Кузнецов В. А., Кожевников В. П. Математическая модель свободной конвекции воздуха в комнате // Известия высших учебных заведений. Проблемы энергетики. 2008. № 7-8. С. 15-27.
17. Zemitis Ju., Bogdanovics R. Heat recovery efficiency of local decentralized ventilation device at various pressure differences // Magazine of Civil Engineering. 2020. Issue 2 (94). Pp. 120-128. DOI: 10.18720/MCE.94.10
18. Исаев С. И., Кожинов И. А., Кофанов В. И., Леонтьев А. И., Миронов Б. М., Никитин В. М. и др. Теория тепломассообмена. 3-е изд. М. : МГТУ им. Н. Э. Баумана, 2017. 448 с.
19. Прандтль Л. Гидроаэромеханика / пер. с нем. М. : Изд-во иностр. лит., 1951. 575 с.
20. Богословский В. Н. Строительная теплофизика (теплофизические основы отопления, вентиляции и кондиционирования воздуха) : учебник для вузов. М. : Высшая школа, 1982. 415 с.
21. Гиясов А. Г., Гиясов Б. И. Проектирование жилых зданий и ограждающих конструкций в условиях жарко-штилевого климата // Жилищное строительство. 2000. № 6. С. 24-25.
Review
For citations:
Kim D.A. Aeration of buildings on difficult terrains. Construction: Science and Education. 2022;12(2):21-30. (In Russ.) https://doi.org/10.22227/2305-5502.2022.2.2